C++ 设计模式——外观模式

2024-08-22 09:36
文章标签 c++ 设计模式 模式 外观

本文主要是介绍C++ 设计模式——外观模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

外观模式

    • C++ 设计模式——外观模式
      • 主要组成部分
        • 1. 外观类(Facade)
        • 2. 子系统类(Subsystem)
        • 3. 客户端(Client)
      • 例一:工作流程示例
        • 1. 外观类(Facade)
        • 2. 子系统类(Subsystem)
        • 3. 客户端(Client)
        • UML 图
        • UML 图解析
          • 1. 外观类与子系统类的依赖
          • 2. 子系统类之间的独立性
          • 3. 客户端与外观类的依赖
      • 例二:工作流程示例
        • 1. 设备类
        • 2. 外观类(HomeTheaterFacade)
        • 3. 客户端(main 函数)
      • UML 图
      • UML 图解析
        • 1. 外观类与子系统类的依赖
        • 2. 子系统类之间的独立性
        • 3. 客户端与外观类的关系
      • 优缺点
      • 适用场景
      • 例一:完整代码
      • 例二:完整代码

C++ 设计模式——外观模式

外观模式(Facade Pattern)是一种结构性设计模式,它为复杂的子系统提供一个简单的接口。通过外观模式,客户端通过外观类与子系统进行交互,外观类将客户端的请求委托给适当的子系统对象,从而实现功能的调用。这样的设计隐藏了子系统的复杂性,使得客户端与子系统之间的耦合度降低。

引入“外观”设计模式的定义(实现意图):提供了一个统一的接口,用来访问子系统中的一群接口。外观定义了一个高层接口,让子系统更容易使用。

主要组成部分

1. 外观类(Facade)
  • 核心角色:外观类是外观模式的核心,提供一个统一的接口,简化客户端与子系统之间的交互。
  • 封装子系统:它封装了多个子系统类,对外提供高层次的接口,使得客户端无需直接与子系统交互。
  • 协调功能:外观类负责协调子系统对象的调用顺序,确保它们能够协同工作。
2. 子系统类(Subsystem)
  • 具体实现:子系统类实现系统的具体功能,通常由多个子系统类组成。
  • 独立性:每个子系统类独立于外观类,它们不需要了解外观类的存在。
  • 相互通信:子系统类之间可以相互通信,也可以被外观类调用。
3. 客户端(Client)
  • 简化交互:客户端使用外观类提供的接口与系统交互。
  • 隐藏细节:客户端不需要了解子系统的具体实现细节,只需与外观类进行交互。

例一:工作流程示例

以《魔兽世界》这款流行的网络游戏为例,其配置选项丰富多样,包括图形、声音和语音聊天等多个方面。每个方面都有详细的配置项。

1. 外观类(Facade)

conffacade 类是外观类,它提供了 LowConfComputerHighConfComputer 两个方法,分别用于配置低配置和高配置的电脑。它内部调用了多个子系统的实例,简化了客户端的调用。

//扮演外观模式角色的类
class conffacade
{//--------------单件类实现相关begin----------------
private:conffacade() {};conffacade(const conffacade& tmpobj);conffacade& operator = (const conffacade& tmpobj);~conffacade() {};
public:static conffacade& getInstance(){static conffacade instance;return instance;}//--------------单件类实现相关end----------------
public:void LowConfComputer() //对于低配置电脑,只开启一些低配置选项{graphic& g_gp = graphic::getInstance();g_gp.display(true); //全屏耗费资源更低g_gp.effect(false);g_gp.resolution(2);g_gp.antialiasing(false);sound& g_snd = sound::getInstance();g_snd.bgsound(false);g_snd.envirsound(false);g_snd.expsound(false);g_snd.setvolume(15);chatvoice& g_cv = chatvoice::getInstance();g_cv.micvolume(20);g_cv.micsens(50);g_cv.chatvolume(60);}void HighConfComputer() //对于高配置电脑,能达到最好效果的项全部开启{graphic& g_gp = graphic::getInstance();g_gp.display(false);g_gp.effect(true);g_gp.resolution(0);g_gp.antialiasing(true);sound& g_snd = sound::getInstance();g_snd.bgsound(true);g_snd.envirsound(true);g_snd.expsound(true);g_snd.setvolume(50);chatvoice& g_cv = chatvoice::getInstance();g_cv.micvolume(100);g_cv.micsens(100);g_cv.chatvolume(100);}
};
2. 子系统类(Subsystem)

每个子系统类(graphicsoundchatvoice)负责自己的特定功能。它们提供了具体的方法供外观类调用,执行实际的业务逻辑。

//图形相关类
class graphic
{//--------------单件类实现相关begin----------------
private:graphic() {};graphic(const graphic& tmpobj);graphic& operator = (const graphic& tmpobj);~graphic() {};
public:static graphic& getInstance(){static graphic instance;return instance;}//--------------单件类实现相关end----------------
public:void display(bool enable) //是否全屏显示(true:是){cout << "图形->是否全屏显示->" << enable << endl;//其他代码略......}void effect(bool enable)//是否开启特效(true:是){cout << "图形->是否开启特效->" << enable << endl;}void resolution(int index) //设置窗口分辨率{cout << "图形->分辨率设置选项->" << index << endl;}void antialiasing(bool enable)//是否开启抗锯齿(true:是){cout << "图形->是否开启抗锯齿->" << enable << endl;}//其他接口略......
};//声音相关类
class sound
{//--------------单件类实现相关begin----------------
private:sound() {};sound(const sound& tmpobj);sound& operator = (const sound& tmpobj);~sound() {};
public:static sound& getInstance(){static sound instance;return instance;}//--------------单件类实现相关end----------------
public:void bgsound(bool enable) //是否开启背景声音(true:是){cout << "声音->是否开启背景声音->" << enable << endl;}void envirsound(bool enable)//是否开启环境音效(true:是){cout << "声音->是否开启环境音效->" << enable << endl;}void expsound(bool enable) //是否开启表情声音(true:是){cout << "声音->是否开启表情声音->" << enable << endl;}void setvolume(int level) //音量大小设置(0-100){cout << "声音->音量大小为->" << level << endl;}//其他接口略......
};//语音聊天相关类
class chatvoice
{//--------------单件类实现相关begin----------------
private:chatvoice() {};chatvoice(const chatvoice& tmpobj);chatvoice& operator = (const chatvoice& tmpobj);~chatvoice() {};
public:static chatvoice& getInstance(){static chatvoice instance;return instance;}//--------------单件类实现相关end----------------
public:void micvolume(int level) //麦克风音量大小设置(0-100){cout << "语音聊天->麦克风音量大小为->" << level << endl;}void micsens(int level)//麦克灵敏度设置(0-100){cout << "语音聊天->麦克风灵敏度为->" << level << endl;}void chatvolume(int level) //聊天音量设置(0-100){cout << "语音聊天->聊天音量为->" << level << endl;}//其他接口略......
};
3. 客户端(Client)

main 函数中,客户端通过调用外观类的 LowConfComputerHighConfComputer 方法来配置电脑,而不需要了解各个子系统的内部实现。这种方式显著降低了复杂性。

int main() 
{conffacade& g_cffde = conffacade::getInstance();cout << "低配置电脑,调用LowConfComputer接口" << endl;g_cffde.LowConfComputer();cout << "------------------" << endl;cout << "高配置电脑,调用HighConfComputer接口" << endl;g_cffde.HighConfComputer();return 0;
}
UML 图

外观模式 UML 图1

UML 图解析
1. 外观类与子系统类的依赖
  • 外观类(conffacade)依赖于子系统类
    • conffacade 类内部需要调用 graphicsoundchatvoice 这三个子系统类的方法,以实现不同配置电脑的功能。
    • 例如,在 LowConfComputerHighConfComputer 方法中,外观类通过调用 graphic::getInstance()sound::getInstance()chatvoice::getInstance() 来获取各个子系统的实例,然后调用它们的方法。
2. 子系统类之间的独立性
  • 子系统类之间的独立性
    • 每个子系统类(如 graphicsoundchatvoice)是独立的,客户端和外观类并不直接依赖于它们的具体实现。
    • 这使得在未来需要修改或扩展某个子系统时,不会影响到客户端或外观类的其他部分。
3. 客户端与外观类的依赖
  • 客户端(main 函数)只依赖于外观类
    • 客户端通过外观类 conffacade 的实例来调用 LowConfComputerHighConfComputer 方法,而不需要直接与 graphicsoundchatvoice 等子系统类交互。
    • 这种设计减少了客户端与子系统之间的耦合,使得系统更易于维护和扩展。

例二:工作流程示例

在家庭影院系统中,多个设备(如屏幕、灯光、音箱、DVD播放器和游戏机)需要协同工作以提供良好的观影和游戏体验。使用外观模式,创建一个 HomeTheaterFacade 类。

1. 设备类

每个设备类都有 OnOff 方法,用于打开和关闭设备。简化这些设备的操作

//屏幕
class Screen
{
public:void On(){cout << "屏幕打开了!" << endl;}void Off(){cout << "屏幕关闭了!" << endl;}
};//灯光
class Light
{
public:void On(){cout << "灯光打开了!" << endl;}void Off(){cout << "灯光关闭了!" << endl;}
};//音箱
class Speaker
{
public:void On(){cout << "音箱打开了!" << endl;}void Off(){cout << "音箱关闭了!" << endl;}
};//DVD播放器
class DvdPlayer
{
public:void On(){cout << "DVD播放器打开了!" << endl;}void Off(){cout << "DVD播放器关闭了!" << endl;}
};//游戏机
class PlayerStation
{
public:void On(){cout << "游戏机打开了!" << endl;}void Off(){cout << "游戏机关闭了!" << endl;}
};
2. 外观类(HomeTheaterFacade)

HomeTheaterFacade 类提供了两个主要方法:WatchMoviePlayGame。这两个方法分别用于观看电影和玩游戏,内部调用相关设备的开关方法。

//家庭影院外观模式类
class HomeTheaterFacade
{
public:void WatchMovie() //看电影{//屏幕打开,灯光熄灭,音箱打开,DVD播放器打开,游戏机关闭。scnobj.On();lgobj.Off();spkobj.On();dpobj.On();psobj.Off();}void PlayGame() //玩游戏{//屏幕打开,灯光打开,音箱打开,DVD播放器关闭,游戏机打开。scnobj.On();lgobj.On();spkobj.On();dpobj.Off();psobj.On();}
private:Screen scnobj;Light lgobj;Speaker spkobj;DvdPlayer dpobj;PlayerStation psobj;
};
3. 客户端(main 函数)

main 函数中,客户端通过 HomeTheaterFacade 实例来调用 WatchMoviePlayGame 方法,简化了多个设备的操作。

int main()
{HomeTheaterFacade htfacobj;cout << "开始看电影---------------" << endl;htfacobj.WatchMovie();cout << "开始玩游戏---------------" << endl;htfacobj.PlayGame();return 0;
}

UML 图

外观模式 UML 图2

UML 图解析

1. 外观类与子系统类的依赖
  • HomeTheaterFacade 类:
    • 该类依赖于多个子系统类(ScreenLightSpeakerDvdPlayerPlayerStation)。它通过这些子系统类的实例来控制家庭影院的各个设备。
    • WatchMoviePlayGame 方法中,HomeTheaterFacade 调用这些子系统的 OnOff 方法来实现设备的开关操作。
2. 子系统类之间的独立性
  • 子系统类(ScreenLightSpeakerDvdPlayerPlayerStation):
    • 每个子系统类独立实现自己的功能,不依赖于其他子系统类。这种设计确保了每个设备的封装性和独立性,使得在未来的扩展中可以单独修改某个设备的实现,而不影响其他设备或外观类。
3. 客户端与外观类的关系
  • 客户端(main 函数):
    • 客户端通过 HomeTheaterFacade 的实例 htfacobj 调用 WatchMoviePlayGame 方法。客户端只依赖于外观类,而不需要直接与子系统类交互。
    • 这种依赖关系使得客户端的代码更为简洁,隐藏了系统的复杂性。

优缺点

优点

  • 简化接口:外观模式提供了一个统一的接口,使得子系统更加容易使用。
  • 降低耦合度:客户端与子系统之间的直接依赖关系减少,客户端只需与外观类交互。
  • 提高灵活性:当子系统发生变更时,只需要调整外观类的实现,而不需要修改客户端代码。
  • 易于维护:由于客户端与子系统解耦,系统的维护和扩展变得更加容易。

缺点

  • 违反开闭原则:如果增加新的子系统或者修改现有子系统的行为,可能需要修改外观类,这违反了开闭原则。
  • 可能导致设计过重:如果不恰当地使用外观模式,可能会导致系统出现大量细粒度的外观类,增加系统的复杂性。
  • 性能问题:在某些情况下,如果外观类需要处理多个子系统的交互,可能会引入额外的性能开销。

适用场景

  • 子系统复杂:当子系统非常复杂,客户端直接与子系统交互会非常困难时,可以使用外观模式。
  • 简化客户端调用:当需要提供一个简单的接口来隐藏系统的复杂性,让客户端不需要了解系统的内部细节时。
  • 构建层次结构:在构建多层结构的系统时,可以使用外观模式定义每一层的入口点,从而简化层与层之间的调用。
  • 解耦系统:当需要减少客户端与多个子系统之间的依赖关系,以降低系统耦合度时。
  • 逐步引入变化:当需要逐步引入新的子系统到现有系统中,而又不想影响现有客户端代码时,可以使用外观模式作为中间层逐步引入变化。

例一:完整代码

#include <iostream>
using namespace std;//图形相关类
class graphic
{//--------------单件类实现相关begin----------------
private:graphic() {};graphic(const graphic& tmpobj);graphic& operator = (const graphic& tmpobj);~graphic() {};
public:static graphic& getInstance(){static graphic instance;return instance;}//--------------单件类实现相关end----------------
public:void display(bool enable) //是否全屏显示(true:是){cout << "图形->是否全屏显示->" << enable << endl;//其他代码略......}void effect(bool enable)//是否开启特效(true:是){cout << "图形->是否开启特效->" << enable << endl;}void resolution(int index) //设置窗口分辨率{cout << "图形->分辨率设置选项->" << index << endl;}void antialiasing(bool enable)//是否开启抗锯齿(true:是){cout << "图形->是否开启抗锯齿->" << enable << endl;}//其他接口略......
};//声音相关类
class sound
{//--------------单件类实现相关begin----------------
private:sound() {};sound(const sound& tmpobj);sound& operator = (const sound& tmpobj);~sound() {};
public:static sound& getInstance(){static sound instance;return instance;}//--------------单件类实现相关end----------------
public:void bgsound(bool enable) //是否开启背景声音(true:是){cout << "声音->是否开启背景声音->" << enable << endl;}void envirsound(bool enable)//是否开启环境音效(true:是){cout << "声音->是否开启环境音效->" << enable << endl;}void expsound(bool enable) //是否开启表情声音(true:是){cout << "声音->是否开启表情声音->" << enable << endl;}void setvolume(int level) //音量大小设置(0-100){cout << "声音->音量大小为->" << level << endl;}//其他接口略......
};//语音聊天相关类
class chatvoice
{//--------------单件类实现相关begin----------------
private:chatvoice() {};chatvoice(const chatvoice& tmpobj);chatvoice& operator = (const chatvoice& tmpobj);~chatvoice() {};
public:static chatvoice& getInstance(){static chatvoice instance;return instance;}//--------------单件类实现相关end----------------
public:void micvolume(int level) //麦克风音量大小设置(0-100){cout << "语音聊天->麦克风音量大小为->" << level << endl;}void micsens(int level)//麦克灵敏度设置(0-100){cout << "语音聊天->麦克风灵敏度为->" << level << endl;}void chatvolume(int level) //聊天音量设置(0-100){cout << "语音聊天->聊天音量为->" << level << endl;}//其他接口略......
};//---------------------------------------------------
//扮演外观模式角色的类
class conffacade
{//--------------单件类实现相关begin----------------
private:conffacade() {};conffacade(const conffacade& tmpobj);conffacade& operator = (const conffacade& tmpobj);~conffacade() {};
public:static conffacade& getInstance(){static conffacade instance;return instance;}//--------------单件类实现相关end----------------
public:void LowConfComputer() //对于低配置电脑,只开启一些低配置选项{graphic& g_gp = graphic::getInstance();g_gp.display(true); //全屏耗费资源更低g_gp.effect(false);g_gp.resolution(2);g_gp.antialiasing(false);sound& g_snd = sound::getInstance();g_snd.bgsound(false);g_snd.envirsound(false);g_snd.expsound(false);g_snd.setvolume(15);chatvoice& g_cv = chatvoice::getInstance();g_cv.micvolume(20);g_cv.micsens(50);g_cv.chatvolume(60);}void HighConfComputer() //对于高配置电脑,能达到最好效果的项全部开启{graphic& g_gp = graphic::getInstance();g_gp.display(false);g_gp.effect(true);g_gp.resolution(0);g_gp.antialiasing(true);sound& g_snd = sound::getInstance();g_snd.bgsound(true);g_snd.envirsound(true);g_snd.expsound(true);g_snd.setvolume(50);chatvoice& g_cv = chatvoice::getInstance();g_cv.micvolume(100);g_cv.micsens(100);g_cv.chatvolume(100);}
};int main()
{    conffacade& g_cffde = conffacade::getInstance();cout << "低配置电脑,调用LowConfComputer接口" << endl;g_cffde.LowConfComputer();cout << "------------------" << endl;cout << "高配置电脑,调用HighConfComputer接口" << endl;g_cffde.HighConfComputer();           return 0;
}

例二:完整代码

//屏幕
class Screen
{
public:void On(){cout << "屏幕打开了!" << endl;}void Off(){cout << "屏幕关闭了!" << endl;}
};//灯光
class Light
{
public:void On(){cout << "灯光打开了!" << endl;}void Off(){cout << "灯光关闭了!" << endl;}
};//音箱
class Speaker
{
public:void On(){cout << "音箱打开了!" << endl;}void Off(){cout << "音箱关闭了!" << endl;}
};//DVD播放器
class DvdPlayer
{
public:void On(){cout << "DVD播放器打开了!" << endl;}void Off(){cout << "DVD播放器关闭了!" << endl;}
};//游戏机
class PlayerStation
{
public:void On(){cout << "游戏机打开了!" << endl;}void Off(){cout << "游戏机关闭了!" << endl;}
};//家庭影院外观模式类
class HomeTheaterFacade
{
public:void WatchMovie() //看电影{//屏幕打开,灯光熄灭,音箱打开,DVD播放器打开,游戏机关闭。scnobj.On();lgobj.Off();spkobj.On();dpobj.On();psobj.Off();}void PlayGame() //玩游戏{//屏幕打开,灯光打开,音箱打开,DVD播放器关闭,游戏机打开。scnobj.On();lgobj.On();spkobj.On();dpobj.Off();psobj.On();}
private:Screen scnobj;Light lgobj;Speaker spkobj;DvdPlayer dpobj;PlayerStation psobj;
};int main()
{HomeTheaterFacade htfacobj;cout << "开始看电影---------------" << endl;htfacobj.WatchMovie();cout << "开始玩游戏---------------" << endl;htfacobj.PlayGame();return 0;
}

这篇关于C++ 设计模式——外观模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095902

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给