使用SBT正确构建IndexedRDD环境

2024-08-22 09:18

本文主要是介绍使用SBT正确构建IndexedRDD环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IndexedRDDAMPLabAnkur Dave提出,它是ImmutabilityFine-Grained updates的精妙结合。IndexedRDD是一个基于RDDKey-Value Store,扩展自RDD[(K, V)],可以在IndexRDD上进行高效的查找、更新以及删除。由于其并没有合并到 Spark 的主项目分支,所以在使用时需要引入特别的对其的支持。

IndexedRDD的详细分析

这里主要是记录引进 IndexedRDD 之后项目出现的各种错误及解决过程,目前关于 IndexedRDD 的文章不多,百度出来的与搭环境有关系的也就十几篇左右,出现错误更是无解,所以特此记录一下填坑之路。

开始引入 IndexedRDD

参见 Github 的说明,在 build.sbt 中添加:

//这句很关键
resolvers += "Spark Packages Repo" at "http://dl.bintray.com/spark-packages/maven"
libraryDependencies += "amplab" % "spark-indexedrdd" % "0.3"

//顺带引入GraphX
libraryDependencies += "org.apache.spark" %% "spark-graphx" % "2.2.0"

编译错误

注意:这里出现了一个天坑,总是编译(包含IndexedRDD时)出错的问题

历经解决过程:

解决措施一

明确 scalaspark 版本的对照关系,版本确定为:
scala-2.11.8
spark-core-2.1.0(graphx同2.1.0)

上述版本是 spark-rdd 代码库中 build.sbt 的版本,详见 Github-spark-indexedrdd

明确 spark-indexedrdd 版本
注意,maven源 的版本只有 0.1 0.2 0.3 0.4.0 这四个,Github代码库中的实例程序推荐的是 0.3

但是编译时会出现如下错误:

Run:
18/05/22 01:29:47 WARN ClosureCleaner: Expected a closure; got edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD$MultiputZipper
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.SparkContext.runJob

Sbt shell:
could not find implicit value for evidence parameter of type edu.berkeley.cs.amplab.spark.indexedrdd.KeySerializer[Long]
解决措施二

这时看到了 源库 的这个 Issue
于是将 spark-indexedrdd 改为 0.4.0 版本,注意是三位数字

然后继续编译仍然出同样的错(没效果)

解决措施三

这时,又看见了 这个问题 其错误跟咱们的不一样,但是格式太像了,然后看他的解决方案:

报错分析:这种异常的发生通常是因为程序需要一个隐式参数 (implicit parameter)
方法的定义中有个 [R: TypeInformation] ,但程序并没有指定任何有关隐式参数的定义,编译代码无法创建 TypeInformation ,所以出现上面提到的异常信息。
解决方案:
1) 我们可以直接在代码里面加上以下的代码:
  implicit val typeInfo = TypeInformation.of(classOf[Int])
然后再去编译代码就不会出现上面的异常。
2) 但是这并不是Flink推荐我们去做的,推荐的做法是在代码中引入一下包:
  import org.apache.flink.streaming.api.scala._
如果数据是有限的(静态数据集),我们可以引入以下包:
  import org.apache.flink.api.scala._
然后即可解决上面的异常信息。

同样的思路,翻过头来看,自己项目里的 import 确实少了一个!

import edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD
// 下面这个不引入也不会报错,但是会编译出错
// 还要注意顺序,上下颠倒IDEA会自动省略
import edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD._

同时还要注意,之前改为 0.4.0 版本是对的,如果换做 0.3 ,此时还是会编译出错

结论

综上,IndexedRDD 环境(示例运行正常)应该如下:

scala-2.11.8 
spark-core-2.1.0
graphx-2.1.0(非必须)
spark-indexedrdd-0.4.0

build.sbt 文件:

name := "VISNWK"
version := "0.1"
scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0"
libraryDependencies += "org.apache.spark" %% "spark-graphx" % "2.1.0"
resolvers += "Spark Packages Repo" at "http://dl.bintray.com/spark-packages/maven"
libraryDependencies += "amplab" % "spark-indexedrdd" % "0.4.0"

IndexedRDD demo(IDEA环境下):

import edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD   //缺一不可
import edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD._ //缺一不可
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

import scala.util.Random

object graphxDemo {
def main(args: Array[String]) {

//设置运行环境
val conf = new SparkConf().setAppName("SimpleGraphX").setMaster("local")
val sc = new SparkContext(conf)

// Create an RDD of key-value pairs with Long keys.
val rdd = sc.parallelize((1 to 1000000).map(x => (x.toLong, 0)))
// Construct an IndexedRDD from the pairs, hash-partitioning and indexing
// the entries.
val indexed = IndexedRDD(rdd).cache()

// Perform a point update.
val indexed2 = indexed.put(1234L, 10873).cache()
// Perform a point lookup. Note that the original IndexedRDD remains
// unmodified.
indexed2.get(1234L) // => Some(10873)
indexed.get(1234L) // => Some(0)

// Efficiently join derived IndexedRDD with original.
val indexed3 = indexed.innerJoin(indexed2) { (id, a, b) => b }.filter(_._2 != 0)
indexed3.collect // => Array((1234L, 10873))

// Perform insertions and deletions.
val indexed4 = indexed2.put(-100L, 111).delete(Array(998L, 999L)).cache()
indexed2.get(-100L) // => None
indexed4.get(-100L) // => Some(111)
indexed2.get(999L) // => Some(0)
indexed4.get(999L) // => None

sc.stop()
}
}

其他错误

注意,之前还出现过 Apache Spark: Java.Lang.NoSuchMethodError .RddToPairRDDFunctions 这个错误,但是今天明确版本后就没有复现,所以该错误八成是因为版本不兼容的缘故,总之还是版本不兼容引起的编译错误。

还有这个错误 unresolved dependency: com.ankurdave#part_2.10;0.1,之前是使用 Sbt 和 Maven 混用,然后用 Maven 添加的 spark-indexedrdd 才出现的这个错误,在改用 Sbt 单一管理依赖后该错误也没有复现。



😒 留下您对该文章的评价 😄


这篇关于使用SBT正确构建IndexedRDD环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095864

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左