深入学习SQL优化的第二天

2024-08-22 04:36

本文主要是介绍深入学习SQL优化的第二天,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

连接

聚合函数


SQL 优化,直接练习写SQL语句,并不仅仅是为了学习 SQL 本身,它实际上也是学习 SQL 优化的一种非常有效的方式,通过不断地编写、执行和调整SQL查询,你可以深入理解数据库的工作原理、查询的执行计划以及哪些因素会影响查询的性能。

接上文

连接

1661. 每台机器的进程平均运行时间

表: Activity+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| machine_id     | int     |
| process_id     | int     |
| activity_type  | enum    |
| timestamp      | float   |
+----------------+---------+
该表展示了一家工厂网站的用户活动。
(machine_id, process_id, activity_type) 是当前表的主键(具有唯一值的列的组合)。
machine_id 是一台机器的ID号。
process_id 是运行在各机器上的进程ID号。
activity_type 是枚举类型 ('start', 'end')。
timestamp 是浮点类型,代表当前时间(以秒为单位)。
'start' 代表该进程在这台机器上的开始运行时间戳 , 'end' 代表该进程在这台机器上的终止运行时间戳。
同一台机器,同一个进程都有一对开始时间戳和结束时间戳,而且开始时间戳永远在结束时间戳前面。现在有一个工厂网站由几台机器运行,每台机器上运行着 相同数量的进程 。编写解决方案,计算每台机器各自完成一个进程任务的平均耗时。完成一个进程任务的时间指进程的'end' 时间戳 减去 'start' 时间戳。平均耗时通过计算每台机器上所有进程任务的总耗费时间除以机器上的总进程数量获得。结果表必须包含machine_id(机器ID) 和对应的 average time(平均耗时) 别名 processing_time,且四舍五入保留3位小数。以 任意顺序 返回表。具体参考例子如下。示例 1:输入:
Activity table:
+------------+------------+---------------+-----------+
| machine_id | process_id | activity_type | timestamp |
+------------+------------+---------------+-----------+
| 0          | 0          | start         | 0.712     |
| 0          | 0          | end           | 1.520     |
| 0          | 1          | start         | 3.140     |
| 0          | 1          | end           | 4.120     |
| 1          | 0          | start         | 0.550     |
| 1          | 0          | end           | 1.550     |
| 1          | 1          | start         | 0.430     |
| 1          | 1          | end           | 1.420     |
| 2          | 0          | start         | 4.100     |
| 2          | 0          | end           | 4.512     |
| 2          | 1          | start         | 2.500     |
| 2          | 1          | end           | 5.000     |
+------------+------------+---------------+-----------+
输出:
+------------+-----------------+
| machine_id | processing_time |
+------------+-----------------+
| 0          | 0.894           |
| 1          | 0.995           |
| 2          | 1.456           |
+------------+-----------------+
解释:
一共有3台机器,每台机器运行着两个进程.
机器 0 的平均耗时: ((1.520 - 0.712) + (4.120 - 3.140)) / 2 = 0.894
机器 1 的平均耗时: ((1.550 - 0.550) + (1.420 - 0.430)) / 2 = 0.995
机器 2 的平均耗时: ((4.512 - 4.100) + (5.000 - 2.500)) / 2 = 1.456

题解:

SELECT machine_id, 
ROUND(SUM(IF(activity_type='end', timestamp, -timestamp)) / COUNT(DISTINCT process_id), 3)
AS processing_time
FROM Activity
GROUP BY machine_id

这段代码是基于 activity_type 字段的值来决定是累加时间戳(timestamp)还是减去时间戳。也就是如果 activity_type 是 end,则累加对应的时间戳;如果不是,则减去对应的时间戳。然后,这个累加或累减的总和除以不同的 process_id 的数量,得到每个机器的平均处理时间,因为最后是 GROUP BY machine_id,所以 COUNT 得到的是相同 machine_id 下不同的 process_id 的数量。

577. 员工奖金

表:Employee +-------------+---------+
| Column Name | Type    |
+-------------+---------+
| empId       | int     |
| name        | varchar |
| supervisor  | int     |
| salary      | int     |
+-------------+---------+
empId 是该表中具有唯一值的列。
该表的每一行都表示员工的姓名和 id,以及他们的工资和经理的 id。表:Bonus+-------------+------+
| Column Name | Type |
+-------------+------+
| empId       | int  |
| bonus       | int  |
+-------------+------+
empId 是该表具有唯一值的列。
empId 是 Employee 表中 empId 的外键(reference 列)。
该表的每一行都包含一个员工的 id 和他们各自的奖金。编写解决方案,报告每个奖金 少于 1000 的员工的姓名和奖金数额。以 任意顺序 返回结果表。结果格式如下所示。示例 1:输入:
Employee table:
+-------+--------+------------+--------+
| empId | name   | supervisor | salary |
+-------+--------+------------+--------+
| 3     | Brad   | null       | 4000   |
| 1     | John   | 3          | 1000   |
| 2     | Dan    | 3          | 2000   |
| 4     | Thomas | 3          | 4000   |
+-------+--------+------------+--------+
Bonus table:
+-------+-------+
| empId | bonus |
+-------+-------+
| 2     | 500   |
| 4     | 2000  |
+-------+-------+
输出:
+------+-------+
| name | bonus |
+------+-------+
| Brad | null  |
| John | null  |
| Dan  | 500   |
+------+-------+

题解:

SELECT name, bonus
FROM Employee
LEFT JOIN Bonus
ON Employee.empId = Bonus.empId
WHERE bonus < 1000
OR bonus IS NULL
;

直接左连接并且加一个对 bonus 的判空即可。

1280. 学生们参加各科测试的次数

学生表: Students+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| student_id    | int     |
| student_name  | varchar |
+---------------+---------+
在 SQL 中,主键为 student_id(学生ID)。
该表内的每一行都记录有学校一名学生的信息。科目表: Subjects+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| subject_name | varchar |
+--------------+---------+
在 SQL 中,主键为 subject_name(科目名称)。
每一行记录学校的一门科目名称。考试表: Examinations+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| student_id   | int     |
| subject_name | varchar |
+--------------+---------+
这个表可能包含重复数据(换句话说,在 SQL 中,这个表没有主键)。
学生表里的一个学生修读科目表里的每一门科目。
这张考试表的每一行记录就表示学生表里的某个学生参加了一次科目表里某门科目的测试。查询出每个学生参加每一门科目测试的次数,结果按 student_id 和 subject_name 排序。查询结构格式如下所示。示例 1:输入:
Students table:
+------------+--------------+
| student_id | student_name |
+------------+--------------+
| 1          | Alice        |
| 2          | Bob          |
| 13         | John         |
| 6          | Alex         |
+------------+--------------+
Subjects table:
+--------------+
| subject_name |
+--------------+
| Math         |
| Physics      |
| Programming  |
+--------------+
Examinations table:
+------------+--------------+
| student_id | subject_name |
+------------+--------------+
| 1          | Math         |
| 1          | Physics      |
| 1          | Programming  |
| 2          | Programming  |
| 1          | Physics      |
| 1          | Math         |
| 13         | Math         |
| 13         | Programming  |
| 13         | Physics      |
| 2          | Math         |
| 1          | Math         |
+------------+--------------+
输出:
+------------+--------------+--------------+----------------+
| student_id | student_name | subject_name | attended_exams |
+------------+--------------+--------------+----------------+
| 1          | Alice        | Math         | 3              |
| 1          | Alice        | Physics      | 2              |
| 1          | Alice        | Programming  | 1              |
| 2          | Bob          | Math         | 1              |
| 2          | Bob          | Physics      | 0              |
| 2          | Bob          | Programming  | 1              |
| 6          | Alex         | Math         | 0              |
| 6          | Alex         | Physics      | 0              |
| 6          | Alex         | Programming  | 0              |
| 13         | John         | Math         | 1              |
| 13         | John         | Physics      | 1              |
| 13         | John         | Programming  | 1              |
+------------+--------------+--------------+----------------+
解释:
结果表需包含所有学生和所有科目(即便测试次数为0):
Alice 参加了 3 次数学测试, 2 次物理测试,以及 1 次编程测试;
Bob 参加了 1 次数学测试, 1 次编程测试,没有参加物理测试;
Alex 啥测试都没参加;
John  参加了数学、物理、编程测试各 1 次。
SELECT student_id, student_name, subject_name, IFNULL(attended_exams, 0) AS attended_exams
FROM Students CROSS JOIN SubjectsLEFT JOIN (SELECT student_id, subject_name, COUNT(*) AS attended_exams FROM Examinations GROUP BY student_id, subject_name) a USING (student_id, subject_name)
ORDER BY student_id, subject_name;

简答题?????????????

570. 至少有5名直接下属的经理

表: Employee+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| id          | int     |
| name        | varchar |
| department  | varchar |
| managerId   | int     |
+-------------+---------+
id 是此表的主键(具有唯一值的列)。
该表的每一行表示雇员的名字、他们的部门和他们的经理的id。
如果managerId为空,则该员工没有经理。
没有员工会成为自己的管理者。编写一个解决方案,找出至少有五个直接下属的经理。以 任意顺序 返回结果表。查询结果格式如下所示。示例 1:输入: 
Employee 表:
+-----+-------+------------+-----------+
| id  | name  | department | managerId |
+-----+-------+------------+-----------+
| 101 | John  | A          | Null      |
| 102 | Dan   | A          | 101       |
| 103 | James | A          | 101       |
| 104 | Amy   | A          | 101       |
| 105 | Anne  | A          | 101       |
| 106 | Ron   | B          | 101       |
+-----+-------+------------+-----------+
输出: 
+------+
| name |
+------+
| John |
+------+

SELECT name 
FROM Employee
WHERE id 
IN (SELECT managerId FROM EmployeeWHERE managerId IS NOT NULLGROUP BY managerIdHAVING COUNT(*) >=5
);

主要是group by 与 having。

不过实际应用中还是要根据实际情况选择使用 in,因为in存在一些潜在的性能问题,无法有效的利用索引,会使数据库放弃使用索引,而进行全表扫描。

当数据量比较大的时候,也会引发性能问题,而且in不会对null进行特殊处理。

所以可以考虑使用 JOIN 来代替。

SELECT e.name 
FROM Employee  e
LEFT JOIN Employee ee 
ON e.id = ee.managerId 
GROUP BY ee.managerId 
HAVING COUNT(ee.managerId) >= 5
;

1934. 确认率

表: Signups+----------------+----------+
| Column Name    | Type     |
+----------------+----------+
| user_id        | int      |
| time_stamp     | datetime |
+----------------+----------+
User_id是该表的主键。
每一行都包含ID为user_id的用户的注册时间信息。表: Confirmations+----------------+----------+
| Column Name    | Type     |
+----------------+----------+
| user_id        | int      |
| time_stamp     | datetime |
| action         | ENUM     |
+----------------+----------+
(user_id, time_stamp)是该表的主键。
user_id是一个引用到注册表的外键。
action是类型为('confirmed', 'timeout')的ENUM
该表的每一行都表示ID为user_id的用户在time_stamp请求了一条确认消息,该确认消息要么被确认('confirmed'),要么被过期('timeout')。用户的 确认率 是 'confirmed' 消息的数量除以请求的确认消息的总数。没有请求任何确认消息的用户的确认率为 0 。确认率四舍五入到 小数点后两位 。编写一个SQL查询来查找每个用户的 确认率 。以 任意顺序 返回结果表。查询结果格式如下所示。示例1:输入:
Signups 表:
+---------+---------------------+
| user_id | time_stamp          |
+---------+---------------------+
| 3       | 2020-03-21 10:16:13 |
| 7       | 2020-01-04 13:57:59 |
| 2       | 2020-07-29 23:09:44 |
| 6       | 2020-12-09 10:39:37 |
+---------+---------------------+
Confirmations 表:
+---------+---------------------+-----------+
| user_id | time_stamp          | action    |
+---------+---------------------+-----------+
| 3       | 2021-01-06 03:30:46 | timeout   |
| 3       | 2021-07-14 14:00:00 | timeout   |
| 7       | 2021-06-12 11:57:29 | confirmed |
| 7       | 2021-06-13 12:58:28 | confirmed |
| 7       | 2021-06-14 13:59:27 | confirmed |
| 2       | 2021-01-22 00:00:00 | confirmed |
| 2       | 2021-02-28 23:59:59 | timeout   |
+---------+---------------------+-----------+
输出: 
+---------+-------------------+
| user_id | confirmation_rate |
+---------+-------------------+
| 6       | 0.00              |
| 3       | 0.00              |
| 7       | 1.00              |
| 2       | 0.50              |
+---------+-------------------+
解释:
用户 6 没有请求任何确认消息。确认率为 0。
用户 3 进行了 2 次请求,都超时了。确认率为 0。
用户 7 提出了 3 个请求,所有请求都得到了确认。确认率为 1。
用户 2 做了 2 个请求,其中一个被确认,另一个超时。确认率为 1 / 2 = 0.5。
SELECT s.user_id,
ROUND(AVG(IF(c.action = 'confirmed',1,0)),2) 
AS confirmation_rate 
FROM Signups s
LEFT JOIN
Confirmations c
ON s.user_id = c.user_id
GROUP BY s.user_id
;

聚合函数

620. 有趣的电影

表:cinema+----------------+----------+
| Column Name    | Type     |
+----------------+----------+
| id             | int      |
| movie          | varchar  |
| description    | varchar  |
| rating         | float    |
+----------------+----------+
id 是该表的主键(具有唯一值的列)。
每行包含有关电影名称、类型和评级的信息。
评级为 [0,10] 范围内的小数点后 2 位浮点数。编写解决方案,找出所有影片描述为 非 boring (不无聊) 的并且 id 为奇数 的影片。返回结果按 rating 降序排列。结果格式如下示例。示例 1:输入:
+---------+-----------+--------------+-----------+
|   id    | movie     |  description |  rating   |
+---------+-----------+--------------+-----------+
|   1     | War       |   great 3D   |   8.9     |
|   2     | Science   |   fiction    |   8.5     |
|   3     | irish     |   boring     |   6.2     |
|   4     | Ice song  |   Fantacy    |   8.6     |
|   5     | House card|   Interesting|   9.1     |
+---------+-----------+--------------+-----------+
输出:
+---------+-----------+--------------+-----------+
|   id    | movie     |  description |  rating   |
+---------+-----------+--------------+-----------+
|   5     | House card|   Interesting|   9.1     |
|   1     | War       |   great 3D   |   8.9     |
+---------+-----------+--------------+-----------+
解释:
我们有三部电影,它们的 id 是奇数:1、3 和 5。id = 3 的电影是 boring 的,所以我们不把它包括在答案中。
SELECT * 
FROM cinema
WHERE description <> 'boring' 
AND id & 1
ORDER BY rating DESC;

这篇关于深入学习SQL优化的第二天的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095251

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置