如何实现下采样(教科书级别教你拿捏)

2024-08-22 04:12

本文主要是介绍如何实现下采样(教科书级别教你拿捏),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在数据处理、信号处理、图像处理以及机器学习等多个领域中,下采样(Downsampling)是一项至关重要的技术。下采样旨在减少数据集中的样本数量,同时尽量保留原始数据的关键信息,以便在降低计算成本、提高处理速度或适应特定分析需求时仍然保持数据的代表性。本文将详细介绍下采样的基本概念、应用场景以及几种常用的实现方法。

一、下采样的基本概念

下采样,也称为降采样,是通过对原始数据进行抽样或聚合操作,以较低的频率重新表示数据的过程。在图像处理中,这通常意味着减少图像的分辨率;在信号处理中,则可能意味着减少采样率。下采样的目标是减少数据量,同时尽可能保持数据的统计特性和重要特征。

二、下采样的应用场景

  1. 图像处理:在图像压缩、图像缩放、特征提取等场景中,下采样能够减少图像的像素数量,降低处理难度和存储需求。
  2. 信号处理:在音频和视频处理中,下采样可以降低信号的采样率,以适应不同的播放设备或网络传输要求。
  3. 机器学习:在训练大规模数据集时,下采样可以帮助减少计算量,加速模型训练过程,尤其是在处理不平衡数据集时,下采样可以有效平衡类别分布。

例子:

import pandas as pd
import matplotlib.pyplot as plt
from pylab import mpl
import numpy as npdef cm_plot(y, yp):from sklearn.metrics import confusion_matriximport matplotlib.pyplot as pltcm = confusion_matrix(y, yp)plt.matshow(cm, cmap=plt.cm.Blues)plt.colorbar()for x in range(len(cm)):for y in range(len(cm)):plt.annotate(cm[x, y], xy=(y, x), horizontalalignment='center',verticalalignment='center')plt.ylabel('True label')plt.xlabel('Predicted label')return pltdata = pd.read_csv(r"./creditcard.csv")from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
a = data[['Amount']]
data['Amount'] = scaler.fit_transform(data[['Amount']])data = data.drop(['Time'], axis=1)positive_eg = data[data['Class'] == 0]
negative_eg = data[data['Class'] == 1]
np.random.seed(seed=4)
positive_eg = positive_eg.sample(len(negative_eg))
data_c = pd.concat([positive_eg,negative_eg])
print(data_c)mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei']
mpl.rcParams['axes.unicode_minus'] = Falselabels_count = pd.value_counts(data['Class'])
plt.title("正负例样本数")
plt.xlabel("类别")
plt.ylabel("频数")
labels_count.plot(kind='bar')
plt.show()from sklearn.model_selection import train_test_splitx = data_c.drop('Class', axis=1)
y = data_c.Class
x_train, x_test, y_train, y_test = \train_test_split(x, y, train_size=0.3, random_state=0)from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegressionscores = []
c_param_range = [0.01, 0.1, 1, 10, 100]
for i in c_param_range:lr = LogisticRegression(C=i, penalty='l2', solver='lbfgs', max_iter=1000)score = cross_val_score(lr, x_train, y_train, cv=8, scoring='recall')score_mean = sum(score) / len(score)scores.append(score_mean)print(score_mean)best_c = c_param_range[np.argmax(scores)]lr = LogisticRegression(C=best_c, penalty='l2', max_iter=1000)
lr.fit(x_train, y_train)from sklearn import metricstrain_predicted = lr.predict(x_train)
print(metrics.classification_report(y_train, train_predicted))
cm_plot(y_train, train_predicted).show()test_predicted = lr.predict(x_test)
print(metrics.classification_report(y_test, test_predicted))
cm_plot(y_test, test_predicted).show()x1 = data.drop('Class', axis=1)
y1 = data.Class
x1_train, x1_test, y1_train, y1_test = \train_test_split(x1, y1, train_size=0.3, random_state=0)test_predicted_big = lr.predict(x1_test)
print(metrics.classification_report(y1_test, test_predicted_big))
cm_plot(y1_test, test_predicted_big).show()recalls = []
thresholds = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for i in thresholds:y_perdict_proba = lr.predict_proba(x_test)y_perdict_proba = pd.DataFrame(y_perdict_proba)y_perdict_proba = y_perdict_proba.drop([0], axis=1)y_perdict_proba[y_perdict_proba[[1]] > i] = 1y_perdict_proba[y_perdict_proba[[1]] <= i] = 0recall = metrics.recall_score(y_test, y_perdict_proba[1])recalls.append(recall)print("{} Recall metric in the testing dataset: {:.3f}".format(i, recall))
  1. 导入库

    • pandas 用于数据处理。
    • matplotlib.pyplot 和 pylab.mpl 用于绘图。
    • numpy 用于数值计算。
    • sklearn 中的 confusion_matrix 和其他模块用于机器学习任务。
  2. 定义混淆矩阵绘制函数 cm_plot

    • 计算混淆矩阵,并用 matplotlib 绘制。
    • 在矩阵中添加每个元素的值,便于观察。
  3. 数据加载和预处理

    • 读取数据集 creditcard.csv
    • 标准化 Amount 特征,确保其均值为 0,方差为 1。
    • 删除 Time 列,因为它对模型训练没有帮助。
    • 对数据进行平衡处理:通过随机抽样将正负样本数量调整一致。
    • 打印平衡后的数据集。
  4. 绘制正负例样本数的柱状图

    • 使用 pandas 计算每个类别的样本数,并用 matplotlib 绘制柱状图。
  5. 模型训练和评估

    • 划分数据集为训练集和测试集。
    • 使用逻辑回归模型,调整正则化参数 C,并通过交叉验证评估模型的召回率。
    • 选择最佳的 C 参数,并用其训练最终模型。
    • 输出训练集和测试集上的分类报告,并绘制混淆矩阵。
  6. 对整个数据集的最终模型评估

    • 重新划分数据集为训练集和测试集,并评估模型的性能。
    • 打印最终的分类报告和混淆矩阵。
  7. 调整阈值进行召回率分析

    • 修改预测概率的阈值,计算不同阈值下的召回率。
    • 绘制不同阈值下的召回率,帮助理解模型在不同条件下的表现。

这篇关于如何实现下采样(教科书级别教你拿捏)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095205

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

PyQt6/PySide6中QTableView类的实现

《PyQt6/PySide6中QTableView类的实现》本文主要介绍了PyQt6/PySide6中QTableView类的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录1. 基本概念2. 创建 QTableView 实例3. QTableView 的常用属性和方法

PyQt6/PySide6中QTreeView类的实现

《PyQt6/PySide6中QTreeView类的实现》QTreeView是PyQt6或PySide6库中用于显示分层数据的控件,本文主要介绍了PyQt6/PySide6中QTreeView类的实现... 目录1. 基本概念2. 创建 QTreeView 实例3. QTreeView 的常用属性和方法属性

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服