【开盖即食】多种算法实现画面动静判断(附源码)

2024-08-22 03:12

本文主要是介绍【开盖即食】多种算法实现画面动静判断(附源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好,我是cv君,今天想跟大家分享一下,如何实现画面动静判断、判断画面或者物体是否在运动或者是比较静止,简单使用计算机视觉传统方法实现,AI的后续带给大家。我们提供三种方案:

1、背景消除法;

2、光流追踪法;

3、相似度、清晰度变化法;

代码开盖即食,拿来可用,请品尝~

然后我们可以把视频中运动的部分保留,静止的部分扣除;

1、背景消除法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"demo3.mp4"
output_video_path = r"demo3.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建背景减除器
bg_subtractor = cv2.createBackgroundSubtractorMOG2(varThreshold=30)
# fgbg = cv2.createBackgroundSubtractorMOG2(varThreshold=30, detectShadows=True)  # 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 处理每一秒的帧
frame_count = 0
seconds_counter = 0
frame_buffer = []while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟# 应用背景减除器fg_mask = bg_subtractor.apply(frame)# 计算前景区域的像素数量non_zero_count = cv2.countNonZero(fg_mask)# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 10 == 0:# print(non_zero_count)if non_zero_count > 15000:  # 根据实际情况调整阈值print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

2、光流追踪法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"zjkzlzxjg-1511.ts"
output_video_path = r"demo3.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 读取第一帧
ret, prev_frame = cap.read()
if not ret:print("无法读取视频帧")exit()prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)# 提取关键点
prev_pts = cv2.goodFeaturesToTrack(prev_gray, maxCorners=1000, qualityLevel=0.3, minDistance=7, blockSize=7)if prev_pts is None:print("无法提取关键点")cap.release()out.release()cv2.destroyAllWindows()exit()
if prev_pts is not None:prev_pts = np.float32(prev_pts).reshape(-1, 1, 2)
# prev_pts = np.int0(prev_pts)frame_buffer = []
frame_count = 0while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 计算光流next_pts, status, err = cv2.calcOpticalFlowPyrLK(prev_gray, gray, prev_pts, None)if next_pts is not None and status is not None:good_prev_pts = prev_pts[status == 1]good_next_pts = next_pts[status == 1]# 计算光流的总变化量displacement = np.linalg.norm(good_next_pts - good_prev_pts, axis=1)non_zero_count = np.sum(displacement > 0.0)  # 根据实际情况调整阈值# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 15 == 0:if non_zero_count > 0:  # 根据实际情况调整阈值print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧prev_gray = grayprev_pts = good_next_pts.reshape(-1, 1, 2)else:print("光流计算失败")# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

3、相似度、清晰度变化法;

import cv2
import numpy as np# 配置视频文件路径和输出文件路径
video_path = r"C:\Users\sunhongzhe\Pictures\expandai_move\a.mp4"
output_video_path = r"C:\Users\sunhongzhe\Pictures\expandai_move\a.avi"# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():print("无法打开视频文件")exit()# 获取视频基本信息
fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 设置输出视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))# 读取第一帧
ret, prev_frame = cap.read()
if not ret:print("无法读取视频帧")exit()prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
prev_edges = cv2.Canny(prev_gray, 50, 150)frame_buffer = []
frame_count = 0# 运动检测阈值
motion_threshold = 3000  # 根据实际情况调整while True:ret, frame = cap.read()if not ret:breakframe_count += 1second = int(frame_count // fps)  # 当前秒钟gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 50, 150)# 计算边缘图像的差异diff = cv2.absdiff(prev_edges, edges)non_zero_count = np.sum(diff > 0)# 保存当前帧到缓冲区frame_buffer.append(frame)# 每秒钟结束时判断运动情况if frame_count % 10 == 0:  # 每秒处理一次if non_zero_count > motion_threshold:  # 根据差异判断是否运动print(non_zero_count)print(f"第 {second} 秒有运动")for f in frame_buffer:out.write(f)  # 将帧写入输出视频else:print(f"第 {second} 秒静止")frame_buffer.clear()  # 清空缓冲区准备处理下一秒的帧prev_edges = edges# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

开盖即食,大家随便放个运动、静止结合的视频进来,调整一下阈值即可实现动静分离;保留运动的视频,剔除静止的画面

第三个方法,剩下的大家可以用phash等相似度方法同理替换,请查阅我的另一篇文章:
【含泪提速!】一文全解相似度算法、跟踪算法在各个AI场景的应用(附代码)_image.antialias-CSDN博客

三个py的就按测阈值,大家都可以改哦,还有多久判断一次,都可以;

这是实现视频中动静画面区分的;

想要实现一个视频中,哪些画面在东,哪些画面在静止,就可以将画面分成多个区域,分别运算这些个算法,都可以得到哪些地方在动,哪些地方在静止了。

演示效果:原本视频没法上传,原视频15秒,静止部分有5秒,最后处理完后,成功剔除了静止部分的帧,保留下了运动的10秒

最后

最近cv君重新常更,欢迎三连~欢迎大家进入cv君的AI 与计算机视觉世界:DeepAI 视界 里面有几千位AI的朋友,有任何问题都可以交流哦,联系微信zxx15277368495z

这篇关于【开盖即食】多种算法实现画面动静判断(附源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095079

相关文章

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti