基于BlockQueue的生产消费模型及Linux中的信号量

2024-08-22 01:36

本文主要是介绍基于BlockQueue的生产消费模型及Linux中的信号量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 基于BlockQueue的生产消费模型

Task.hpp

#pragma once#include<cstdio>
#include<iostream>
#include<string>
#include<functional>using namespace std;
class CalTask
{using func_t=function<int(int,int,char)>;//typedef function<int(int,int)> func_t;
public:CalTask(){}CalTask(int x,int y,char op,func_t func):_x(x),_y(y),_op(op),_callback(func){}string operator()(){int result=_callback(_x,_y,_op);//构建结构字符串char buffer[1024];snprintf(buffer,sizeof buffer,"%d %c %d = %d ",_x,_op,_y,result);return buffer;}string toTaskString(){char buffer[1024];snprintf(buffer,sizeof buffer,"%d %c %d = ? ",_x,_op,_y);return buffer;}
private:int _x;int _y;char _op;func_t _callback;
};int mymath(int x,int y,char op)
{int result=0;switch(op){case '+':result=x+y;break;case '-':result=x-y;break;case '*':result=x*y;break;case '/':{if(y==0){cerr<<"div zero error!!!"<<endl;result=-1;}elseresult=x/y;}break;case '%':{if(y==0){cerr<<"mod zero error!!!"<<endl;result=-1;}elseresult=x%y;}          break;default:break;}return result;
}
class SaveTask
{typedef function<void(const string&)> func_t;
public:SaveTask(){}SaveTask(const string &message,func_t func):_message(message),_func(func){}void operator()(){_func(_message);}
private:string _message;func_t _func;
};
void Save(const string& message)
{const string target="./log.txt";FILE* fp=fopen(target.c_str(),"a+");if(!fp){cerr<<" fopen error "<<endl;return;} fputs(message.c_str(),fp);fputs("\n",fp);fclose(fp);
}

Block.hpp

#pragma once#include<iostream>
#include<queue>
#include<pthread.h>
#include<unistd.h>using namespace std;
static const int gmaxcap=5;
template<class T>
class BlockQueue
{
public:BlockQueue(const int& maxcap=gmaxcap):_maxcap(maxcap){pthread_mutex_init(&_mutex,nullptr);pthread_cond_init(&_pcond,nullptr);pthread_cond_init(&_ccond,nullptr);}void push(const T& in)//输入型参数,const &{pthread_mutex_lock(&_mutex);//1.判断while(is_full())//防止向队列中多push内容->提高代码健壮性{//生产条件不满足无法生产,需要生产者等待//临界区://pthread_cond_wait   第二个参数必须为我们正在使用的互斥锁!!!//1.pthread_cond_wait:该函数在调用的时候,会以原子性的方式将锁释放,并将自己挂起//2.pthread_cond_wait:该函数在被唤醒返回的时候,会自动重新获取当时传入的锁pthread_cond_wait(&_pcond,&_mutex);}_q.push(in);//pthread_cond_signal即可在临界区内也可在临界区外pthread_cond_signal(&_ccond);pthread_mutex_unlock(&_mutex);}void pop(T* out)//输出型参数:*, // 输入输出型:&{pthread_mutex_lock(&_mutex);while(is_empty()){pthread_cond_wait(&_ccond,&_mutex);}*out=_q.front();_q.pop();pthread_cond_signal(&_pcond);pthread_mutex_unlock(&_mutex);}~BlockQueue(){pthread_mutex_destroy(&_mutex);pthread_cond_destroy(&_pcond);pthread_cond_destroy(&_ccond);}
private:bool is_empty() {return _q.empty();}bool is_full(){return _q.size()==_maxcap;}queue<T> _q;int _maxcap;//队列中元素的上限pthread_mutex_t _mutex;pthread_cond_t _pcond;//生产者对应的条件变量pthread_cond_t _ccond;//消费者对应的条件变量
}; 

Main.cc

#include<time.h>
#include<cstring>
#include<sys/types.h>
#include"BlockQueue.hpp"
#include"Task.hpp"const string oper="+-*/%";template<class C,class S>
class BlockQueues
{
public:BlockQueue<C> *c_bq;BlockQueue<S> *s_bq;
};
void* productor(void *bqs_)
{//BlockQueue<Task>* bq=static_cast<BlockQueue<Task>*>(bq_);BlockQueue<CalTask>* bq= (static_cast<BlockQueues<CalTask,SaveTask>*>(bqs_))->c_bq;while(true){//生产活动-x先用随机数构建数据int x=rand()%10+1;int y=rand()%5;int operCode=rand()%oper.size();CalTask t(x,y,oper[operCode],mymath);bq->push(t);cout<<"productor thread,生产数据: "<<t.toTaskString()<<endl;sleep(1);}return nullptr;
}
void *consumer(void* bqs_)
{//BlockQueue<Task>* bq=static_cast<BlockQueue<Task>*>(bq_);BlockQueue<CalTask>* bq= (static_cast<BlockQueues<CalTask,SaveTask>*>(bqs_))->c_bq;BlockQueue<SaveTask>* save_bq= (static_cast<BlockQueues<CalTask,SaveTask>*>(bqs_))->s_bq;while(true){//消费活动CalTask t;bq->pop(&t);string result=t();cout<<"消费任务: "<<result<<endl;// SaveTask save(result,Save);// save_bq->push(save);// cout<<"consumer thread,推送保存任务完成..."<<endl;}return nullptr;
}void* saver(void* bqs_)
{BlockQueue<SaveTask>* save_bq= (static_cast<BlockQueues<CalTask,SaveTask>*>(bqs_))->s_bq;while(true){SaveTask t;save_bq->pop(&t);t();cout<<"保存任务完成..."<<endl;}
}
int main()
{srand((unsigned long)time(nullptr));BlockQueues<CalTask,SaveTask> bqs;bqs.c_bq=new BlockQueue<CalTask>();bqs.s_bq=new BlockQueue<SaveTask>();pthread_t c,p,s;pthread_create(&c,nullptr,consumer,&bqs);pthread_create(&p,nullptr,productor,&bqs);// pthread_create(&s,nullptr,saver,&bqs);pthread_join(c,nullptr);pthread_join(p,nullptr);// pthread_join(s,nullptr);delete bqs.c_bq;delete bqs.s_bq;return 0;
}

POSIX信号量

POSIX信号量和SystemV信号量作用相同,都是用于同步操作,达到无冲突的访问共享资源目的。 但POSIX可以用于 线程间同步。 

        pthread_mutex_lock(&_mutex);while(is_empty()){pthread_cond_wait(&_ccond,&_mutex);}*out=_q.front();_q.pop();pthread_cond_signal(&_pcond);pthread_mutex_unlock(&_mutex);

该段代码涉及到对临界资源的访问:

1.一个线程,在操作临界资源的时候,临界资源必须是满足条件的!!!

2.公共资源是否满足生产或消费条件【我们在访问之前无法得知】

3.只能先加锁,在检测,在操作,在解锁

只要对资源进行整体加锁,就默认对资源整体使用,但是实际情况可能是一份公共资源允许同时访问不同区域。

什么事信号量???

a.信号量本质是一个计数器。->用来衡量有多少临界资源。

b.只要拥有信号量,就在未来一定能够拥有临界资源的一部分。

申请信号量的本质:对临界资源中特定小块资源的预定机制。

通过信号量可以在访问临界资源之前,提前知道临界资源的使用情况。

信号量的核心操作:PV原语

sudo find ../../ -name Thread.hpp
cp ../../lesson32/Thread.hpp .

这篇关于基于BlockQueue的生产消费模型及Linux中的信号量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094868

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断