千万级别的数据导出Redis、php

2024-08-21 23:52

本文主要是介绍千万级别的数据导出Redis、php,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要处理千万级别数据涵盖了多表联查、条件筛选、Redis缓存优化、yield生成器优化内存,以及将数据导出到Excel文件。

方案概述

  1. 多表分步查询:避免直接的多表联查,通过逐表查询并在应用层进行数据组合,以减少数据库的锁定风险

  2. Redis 缓存:在多表联查过程中使用 Redis 进行中间结果的缓存,减少数据库查询次数。

  3. yield生成器:通过 PHP 的 yield 生成器逐条处理数据,减少内存占用。

  4. 分批导出:使用 PhpSpreadsheet 进行数据的分批写入,控制内存占用。

MySQL 表结构示例

假设有三张表 orderscustomers, 和 products,分别存储订单信息、客户信息和商品信息。

CREATE TABLE customers (id BIGINT PRIMARY KEY,name VARCHAR(255),email VARCHAR(255)
);CREATE TABLE products (id BIGINT PRIMARY KEY,name VARCHAR(255),price DECIMAL(10, 2)
);CREATE TABLE orders (id BIGINT PRIMARY KEY,customer_id BIGINT,product_id BIGINT,quantity INT,order_date DATETIME,FOREIGN KEY (customer_id) REFERENCES customers(id),FOREIGN KEY (product_id) REFERENCES products(id)
);

1. 分步查询与数据组合

首先分步查询每个表的数据,然后在应用层面合并这些数据,避免复杂的 SQL JOIN 操作

function fetchOrders($pdo, $batchSize, $offset, $conditions) {$sql = "SELECT * FROM orders WHERE $conditions LIMIT :limit OFFSET :offset";$stmt = $pdo->prepare($sql);$stmt->bindValue(':limit', $batchSize, PDO::PARAM_INT);$stmt->bindValue(':offset', $offset, PDO::PARAM_INT);$stmt->execute();return $stmt->fetchAll(PDO::FETCH_ASSOC);
}function fetchCustomers($pdo, $customerIds) {$inQuery = implode(',', array_fill(0, count($customerIds), '?'));$sql = "SELECT * FROM customers WHERE id IN ($inQuery)";$stmt = $pdo->prepare($sql);$stmt->execute($customerIds);return $stmt->fetchAll(PDO::FETCH_ASSOC);
}function fetchProducts($pdo, $productIds) {$inQuery = implode(',', array_fill(0, count($productIds), '?'));$sql = "SELECT * FROM products WHERE id IN ($inQuery)";$stmt = $pdo->prepare($sql);$stmt->execute($productIds);return $stmt->fetchAll(PDO::FETCH_ASSOC);
}function combineData($orders, $customers, $products) {$customerMap = array_column($customers, null, 'id');$productMap = array_column($products, null, 'id');foreach ($orders as &$order) {$order['customer_name'] = $customerMap[$order['customer_id']]['name'] ?? '';$order['product_name'] = $productMap[$order['product_id']]['name'] ?? '';$order['price'] = $productMap[$order['product_id']]['price'] ?? 0.0;}return $orders;
}

2. 使用 Redis 缓存中间数据

在进行下一步的查询和数据处理之前,缓存中间结果,减少重复查询。

function cacheOrdersInRedis($redis, $orders, $batchSize) {foreach ($orders as $order) {$redis->rpush('orders_cache', json_encode($order));}
}function getOrdersFromRedis($redis, $batchSize) {return array_map('json_decode', $redis->lrange('orders_cache', 0, $batchSize - 1));
}

3. 使用 yield 优化内存使用

通过 yield 逐条处理数据,避免内存占用过多。

function orderGenerator($redis, $batchSize) {while (true) {$orders = getOrdersFromRedis($redis, $batchSize);if (empty($orders)) {break;}foreach ($orders as $order) {yield $order;}// 删除已经处理的数据$redis->ltrim('orders_cache', $batchSize, -1);}
}

4. 分批导出到 Excel

使用 PhpSpreadsheet 分批写入数据到 Excel 文件中。

use PhpOffice\PhpSpreadsheet\Spreadsheet;
use PhpOffice\PhpSpreadsheet\Writer\Xlsx;function exportToExcel($filename, $dataGenerator) {$spreadsheet = new Spreadsheet();$sheet = $spreadsheet->getActiveSheet();$row = 1;foreach ($dataGenerator as $dataRow) {$col = 1;foreach ($dataRow as $value) {$sheet->setCellValueByColumnAndRow($col, $row, $value);$col++;}$row++;}$writer = new Xlsx($spreadsheet);$writer->save($filename);
}

5. 综合实现

$pdo = new PDO("mysql:host=localhost;dbname=test", "user", "pass");
$redis = new Redis();
$redis->connect('127.0.0.1', 6379);$batchSize = 10000;
$cacheKey = "orders_cache";
$filename = "export.xlsx";// 假设要筛选最近一个月的订单
$conditions = "order_date >= DATE_SUB(NOW(), INTERVAL 1 MONTH)";// 清空 Redis 缓存
$redis->del($cacheKey);$offset = 0;
while ($orders = fetchOrders($pdo, $batchSize, $offset, $conditions)) {// 获取关联数据$customerIds = array_column($orders, 'customer_id');$productIds = array_column($orders, 'product_id');$customers = fetchCustomers($pdo, $customerIds);$products = fetchProducts($pdo, $productIds);// 合并数据$combinedData = combineData($orders, $customers, $products);// 缓存数据到 RediscacheOrdersInRedis($redis, $combinedData, $batchSize);$offset += $batchSize;
}// 使用 `yield` 生成器逐条获取数据并导出
$dataGenerator = orderGenerator($redis, $batchSize);
exportToExcel($filename, $dataGenerator);echo "Data export completed.";

优化点

  1. 分步查询:避免直接进行多表 JOIN,减少数据库锁表风险。

  2. Redis 缓存:中间结果缓存到 Redis,减少重复的数据库查询,提高效率。

  3. yield 生成器:逐条处理数据,避免一次性加载大量数据到内存中,优化内存使用。

  4. 分批导出:通过 PhpSpreadsheet 分批写入 Excel,控制内存消耗。

这样可以有效避免大规模联表查询带来的锁表问题,同时保持数据处理的效率和内存的合理使用。

 

这篇关于千万级别的数据导出Redis、php的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094644

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da