千万级别的数据导出Redis、php

2024-08-21 23:52

本文主要是介绍千万级别的数据导出Redis、php,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要处理千万级别数据涵盖了多表联查、条件筛选、Redis缓存优化、yield生成器优化内存,以及将数据导出到Excel文件。

方案概述

  1. 多表分步查询:避免直接的多表联查,通过逐表查询并在应用层进行数据组合,以减少数据库的锁定风险

  2. Redis 缓存:在多表联查过程中使用 Redis 进行中间结果的缓存,减少数据库查询次数。

  3. yield生成器:通过 PHP 的 yield 生成器逐条处理数据,减少内存占用。

  4. 分批导出:使用 PhpSpreadsheet 进行数据的分批写入,控制内存占用。

MySQL 表结构示例

假设有三张表 orderscustomers, 和 products,分别存储订单信息、客户信息和商品信息。

CREATE TABLE customers (id BIGINT PRIMARY KEY,name VARCHAR(255),email VARCHAR(255)
);CREATE TABLE products (id BIGINT PRIMARY KEY,name VARCHAR(255),price DECIMAL(10, 2)
);CREATE TABLE orders (id BIGINT PRIMARY KEY,customer_id BIGINT,product_id BIGINT,quantity INT,order_date DATETIME,FOREIGN KEY (customer_id) REFERENCES customers(id),FOREIGN KEY (product_id) REFERENCES products(id)
);

1. 分步查询与数据组合

首先分步查询每个表的数据,然后在应用层面合并这些数据,避免复杂的 SQL JOIN 操作

function fetchOrders($pdo, $batchSize, $offset, $conditions) {$sql = "SELECT * FROM orders WHERE $conditions LIMIT :limit OFFSET :offset";$stmt = $pdo->prepare($sql);$stmt->bindValue(':limit', $batchSize, PDO::PARAM_INT);$stmt->bindValue(':offset', $offset, PDO::PARAM_INT);$stmt->execute();return $stmt->fetchAll(PDO::FETCH_ASSOC);
}function fetchCustomers($pdo, $customerIds) {$inQuery = implode(',', array_fill(0, count($customerIds), '?'));$sql = "SELECT * FROM customers WHERE id IN ($inQuery)";$stmt = $pdo->prepare($sql);$stmt->execute($customerIds);return $stmt->fetchAll(PDO::FETCH_ASSOC);
}function fetchProducts($pdo, $productIds) {$inQuery = implode(',', array_fill(0, count($productIds), '?'));$sql = "SELECT * FROM products WHERE id IN ($inQuery)";$stmt = $pdo->prepare($sql);$stmt->execute($productIds);return $stmt->fetchAll(PDO::FETCH_ASSOC);
}function combineData($orders, $customers, $products) {$customerMap = array_column($customers, null, 'id');$productMap = array_column($products, null, 'id');foreach ($orders as &$order) {$order['customer_name'] = $customerMap[$order['customer_id']]['name'] ?? '';$order['product_name'] = $productMap[$order['product_id']]['name'] ?? '';$order['price'] = $productMap[$order['product_id']]['price'] ?? 0.0;}return $orders;
}

2. 使用 Redis 缓存中间数据

在进行下一步的查询和数据处理之前,缓存中间结果,减少重复查询。

function cacheOrdersInRedis($redis, $orders, $batchSize) {foreach ($orders as $order) {$redis->rpush('orders_cache', json_encode($order));}
}function getOrdersFromRedis($redis, $batchSize) {return array_map('json_decode', $redis->lrange('orders_cache', 0, $batchSize - 1));
}

3. 使用 yield 优化内存使用

通过 yield 逐条处理数据,避免内存占用过多。

function orderGenerator($redis, $batchSize) {while (true) {$orders = getOrdersFromRedis($redis, $batchSize);if (empty($orders)) {break;}foreach ($orders as $order) {yield $order;}// 删除已经处理的数据$redis->ltrim('orders_cache', $batchSize, -1);}
}

4. 分批导出到 Excel

使用 PhpSpreadsheet 分批写入数据到 Excel 文件中。

use PhpOffice\PhpSpreadsheet\Spreadsheet;
use PhpOffice\PhpSpreadsheet\Writer\Xlsx;function exportToExcel($filename, $dataGenerator) {$spreadsheet = new Spreadsheet();$sheet = $spreadsheet->getActiveSheet();$row = 1;foreach ($dataGenerator as $dataRow) {$col = 1;foreach ($dataRow as $value) {$sheet->setCellValueByColumnAndRow($col, $row, $value);$col++;}$row++;}$writer = new Xlsx($spreadsheet);$writer->save($filename);
}

5. 综合实现

$pdo = new PDO("mysql:host=localhost;dbname=test", "user", "pass");
$redis = new Redis();
$redis->connect('127.0.0.1', 6379);$batchSize = 10000;
$cacheKey = "orders_cache";
$filename = "export.xlsx";// 假设要筛选最近一个月的订单
$conditions = "order_date >= DATE_SUB(NOW(), INTERVAL 1 MONTH)";// 清空 Redis 缓存
$redis->del($cacheKey);$offset = 0;
while ($orders = fetchOrders($pdo, $batchSize, $offset, $conditions)) {// 获取关联数据$customerIds = array_column($orders, 'customer_id');$productIds = array_column($orders, 'product_id');$customers = fetchCustomers($pdo, $customerIds);$products = fetchProducts($pdo, $productIds);// 合并数据$combinedData = combineData($orders, $customers, $products);// 缓存数据到 RediscacheOrdersInRedis($redis, $combinedData, $batchSize);$offset += $batchSize;
}// 使用 `yield` 生成器逐条获取数据并导出
$dataGenerator = orderGenerator($redis, $batchSize);
exportToExcel($filename, $dataGenerator);echo "Data export completed.";

优化点

  1. 分步查询:避免直接进行多表 JOIN,减少数据库锁表风险。

  2. Redis 缓存:中间结果缓存到 Redis,减少重复的数据库查询,提高效率。

  3. yield 生成器:逐条处理数据,避免一次性加载大量数据到内存中,优化内存使用。

  4. 分批导出:通过 PhpSpreadsheet 分批写入 Excel,控制内存消耗。

这样可以有效避免大规模联表查询带来的锁表问题,同时保持数据处理的效率和内存的合理使用。

 

这篇关于千万级别的数据导出Redis、php的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094644

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca