TensorFlow random_crop和multinomial等方法学习

2024-08-21 20:08

本文主要是介绍TensorFlow random_crop和multinomial等方法学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在学习斯坦福大学TensorFlow教程第二节课(https://www.youtube.com/watch?v=9kC836XhICU&list=PLQ0sVbIj3URf94DQtGPJV629ctn2c1zN-&index=2)的时候,遇到几个随机数生成的方法,这里学习一下。

第一个是tf.random_normal(),该方法就是用正态分布产生随机数,默认是标准正态分布。

第二个是tf.truncated_normal(),该方法类似上一个,就是多了店截断操作,具体说就是产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。

第三个是tf.random_uniform(),该方法则是用均匀分布产生随机值,默认浮点数范围[0, 1),整数的话maxval要指定。均匀分布也就是(a, b)范围内,概率密度f(x) = 1 / (b - a),其他地方则为0。

第四个是tf.random_suffle(),每一次都把其中的一些行换位置或者不换,代码如下:

import tensorflow as tfa = tf.get_variable('a', [3, 2], initializer=tf.random_normal_initializer(mean=0, stddev=1))init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print(sess.run(a))print(sess.run(tf.random_shuffle(a)))

结果如下:

[[ 2.0261083  -0.34673768][ 0.09152898  1.1487025 ][ 1.2850556   0.97470516]]
[[ 2.0261083  -0.34673768][ 1.2850556   0.97470516][ 0.09152898  1.1487025 ]]

这里所有行都没变,再执行一次:

[[ 0.5839885  -0.11081421][-0.4712714   0.40724093][-0.12657043 -0.03069498]]
[[-0.12657043 -0.03069498][ 0.5839885  -0.11081421][-0.4712714   0.40724093]]

发现行的位置变了,该函数的操作效果就是这样。我在写代码的时候,不小心把tf.global_variables_initializer()写在了变量a前面,这个时候程序报错。虽然我觉得还没用sess.run(),所以tf.global_variables_initializer()位置应该可以放前面的,不过确实不行。

第五个是tf.random_crop(),参考https://blog.csdn.net/sinat_21585785/article/details/74144800。例如我的原图为:

裁剪为:

再运行一次,裁剪为:

代码如下:

import tensorflow as tf
import matplotlib.image as img
import matplotlib.pyplot as pltsess = tf.InteractiveSession()
image = img.imread('MarshOrchid.jpg')reshaped_image = tf.cast(image, tf.float32)
size = tf.cast(tf.shape(reshaped_image).eval(), tf.int32)height = sess.run(size[0] // 2)
width = sess.run(size[1] // 2)distored_image = tf.random_crop(reshaped_image, [height, width, 3])print(tf.shape(reshaped_image).eval())
print(tf.shape(distored_image).eval())fig = plt.figure()
fig1 = plt.figure()ax = fig.add_subplot(111)
ax1 = fig1.add_subplot(111)ax.imshow(sess.run(tf.cast(reshaped_image, tf.uint8)))
ax1.imshow(sess.run(tf.cast(distored_image, tf.uint8)))plt.show()

这里用matplotlib.image的imread()方法读入图片,用tf.cast()方法将其数值转换为float32类型,然后打印其shape,我这里为[5528 3685    3]。接着用整除得到裁剪数值,选择的为裁剪一半。接着是figure实例,add_subplot()操作添加子图,一个的话里面是“111”,两个的话则分别add_subplot(221),add_subplot(222),add_subplot(223),add_subplot(224)。imshow()方法第一个参数X存储图像,最后用plt.show()显示。

第六个tf.multinomial(),multinomial也就是多项式。这个方法可以从多项式分布中抽取样本,就是根据概率分布的大小,返回对应维度的下标序号。测试代码如下:

import numpy as np
import tensorflow as tfb = tf.constant(np.random.normal(size = (3, 4)))with tf.Session() as sess:print(sess.run(b))print(sess.run(tf.multinomial(b, 5)))

结果为:

[[ 2.04100276 -1.12229608 -0.78679458 -0.16623389][ 0.73953609 -0.06907413  0.38520517 -0.27433991][ 0.0813765  -0.16081293 -2.02023628  0.23459176]]
[[0 0 0 0 2][3 0 2 1 2][0 1 0 3 3]]

b变量原来为三行四列的,经过该操作后成了三行五列的。multinomial()方法第一个参数是一个2-D Tensor,称为logits,其shape为[batch_size, num_classes],所以本例中batch_size就是3,num_classes就是4。第二个参数是num_samples,是一个0-D Tensor,也就是常量,表示从每一行切片中获取的独立样本的个数。这里我用的随机数作为初始变量,其实如果以固定的值来算,其multinomial()结果也会是变化的。

第七个是tf.random_gamma()。该方法根据gamma分布个数,每个分布给出shape参数对应个数数据。

在本部分的学习中,遇到的一些其他不清楚的问题一并记录如下。

1. numpy的eye()方法可以得到一个单位矩阵,如

import numpy as npe = np.eye(3)

得到的结果如下:

[[1. 0. 0.][0. 1. 0.][0. 0. 1.]]

这也就是3行3列的方阵,单位矩阵一定是方阵。不过该方法实际上可以不产生方阵,如将其改为np.eye(3, 4),那么就得到3行4列的如下输出:

[[1. 0. 0. 0.][0. 1. 0. 0.][0. 0. 1. 0.]]

其类型是numpy.ndarray,可以用e.shape属性获取其shape信息。

2. TensorFlow的变量也是可以用shape直接获取其shape属性的,如:

import tensorflow as tfa = tf.get_variable('a', [2, 3], initializer=tf.random_normal_initializer(mean=0, stddev=1))init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print('a:\n', sess.run(a))print(type(a))print(a.shape)

这里面变量a是2行3列的矩阵,其类型是tensorflow.python.ops.variables.Variable,虽然不是numpy.ndarray,但是用a.shape是没问题的。接着,TensorFlow有tf.shape(x)和x.get_shape()两个方法,和以上有什么不同呢?加上print(tf.shape(a)),得到的是:

Tensor("Shape:0", shape=(2,), dtype=int32)

所以对于tf.shape(x),x可以是tensor,也可以不是,其返回值是一个tensor。shape=(2,)也就是个二维矩阵了,接着 print(sess.run(tf.shape(a)))确定运行后其二维各自大小,得到:

[2 3]

也就是该二维矩阵第一个维度(行)是2,第二个维度(列)是3。

这篇关于TensorFlow random_crop和multinomial等方法学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094154

相关文章

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那