TensorFlow random_crop和multinomial等方法学习

2024-08-21 20:08

本文主要是介绍TensorFlow random_crop和multinomial等方法学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在学习斯坦福大学TensorFlow教程第二节课(https://www.youtube.com/watch?v=9kC836XhICU&list=PLQ0sVbIj3URf94DQtGPJV629ctn2c1zN-&index=2)的时候,遇到几个随机数生成的方法,这里学习一下。

第一个是tf.random_normal(),该方法就是用正态分布产生随机数,默认是标准正态分布。

第二个是tf.truncated_normal(),该方法类似上一个,就是多了店截断操作,具体说就是产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。

第三个是tf.random_uniform(),该方法则是用均匀分布产生随机值,默认浮点数范围[0, 1),整数的话maxval要指定。均匀分布也就是(a, b)范围内,概率密度f(x) = 1 / (b - a),其他地方则为0。

第四个是tf.random_suffle(),每一次都把其中的一些行换位置或者不换,代码如下:

import tensorflow as tfa = tf.get_variable('a', [3, 2], initializer=tf.random_normal_initializer(mean=0, stddev=1))init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print(sess.run(a))print(sess.run(tf.random_shuffle(a)))

结果如下:

[[ 2.0261083  -0.34673768][ 0.09152898  1.1487025 ][ 1.2850556   0.97470516]]
[[ 2.0261083  -0.34673768][ 1.2850556   0.97470516][ 0.09152898  1.1487025 ]]

这里所有行都没变,再执行一次:

[[ 0.5839885  -0.11081421][-0.4712714   0.40724093][-0.12657043 -0.03069498]]
[[-0.12657043 -0.03069498][ 0.5839885  -0.11081421][-0.4712714   0.40724093]]

发现行的位置变了,该函数的操作效果就是这样。我在写代码的时候,不小心把tf.global_variables_initializer()写在了变量a前面,这个时候程序报错。虽然我觉得还没用sess.run(),所以tf.global_variables_initializer()位置应该可以放前面的,不过确实不行。

第五个是tf.random_crop(),参考https://blog.csdn.net/sinat_21585785/article/details/74144800。例如我的原图为:

裁剪为:

再运行一次,裁剪为:

代码如下:

import tensorflow as tf
import matplotlib.image as img
import matplotlib.pyplot as pltsess = tf.InteractiveSession()
image = img.imread('MarshOrchid.jpg')reshaped_image = tf.cast(image, tf.float32)
size = tf.cast(tf.shape(reshaped_image).eval(), tf.int32)height = sess.run(size[0] // 2)
width = sess.run(size[1] // 2)distored_image = tf.random_crop(reshaped_image, [height, width, 3])print(tf.shape(reshaped_image).eval())
print(tf.shape(distored_image).eval())fig = plt.figure()
fig1 = plt.figure()ax = fig.add_subplot(111)
ax1 = fig1.add_subplot(111)ax.imshow(sess.run(tf.cast(reshaped_image, tf.uint8)))
ax1.imshow(sess.run(tf.cast(distored_image, tf.uint8)))plt.show()

这里用matplotlib.image的imread()方法读入图片,用tf.cast()方法将其数值转换为float32类型,然后打印其shape,我这里为[5528 3685    3]。接着用整除得到裁剪数值,选择的为裁剪一半。接着是figure实例,add_subplot()操作添加子图,一个的话里面是“111”,两个的话则分别add_subplot(221),add_subplot(222),add_subplot(223),add_subplot(224)。imshow()方法第一个参数X存储图像,最后用plt.show()显示。

第六个tf.multinomial(),multinomial也就是多项式。这个方法可以从多项式分布中抽取样本,就是根据概率分布的大小,返回对应维度的下标序号。测试代码如下:

import numpy as np
import tensorflow as tfb = tf.constant(np.random.normal(size = (3, 4)))with tf.Session() as sess:print(sess.run(b))print(sess.run(tf.multinomial(b, 5)))

结果为:

[[ 2.04100276 -1.12229608 -0.78679458 -0.16623389][ 0.73953609 -0.06907413  0.38520517 -0.27433991][ 0.0813765  -0.16081293 -2.02023628  0.23459176]]
[[0 0 0 0 2][3 0 2 1 2][0 1 0 3 3]]

b变量原来为三行四列的,经过该操作后成了三行五列的。multinomial()方法第一个参数是一个2-D Tensor,称为logits,其shape为[batch_size, num_classes],所以本例中batch_size就是3,num_classes就是4。第二个参数是num_samples,是一个0-D Tensor,也就是常量,表示从每一行切片中获取的独立样本的个数。这里我用的随机数作为初始变量,其实如果以固定的值来算,其multinomial()结果也会是变化的。

第七个是tf.random_gamma()。该方法根据gamma分布个数,每个分布给出shape参数对应个数数据。

在本部分的学习中,遇到的一些其他不清楚的问题一并记录如下。

1. numpy的eye()方法可以得到一个单位矩阵,如

import numpy as npe = np.eye(3)

得到的结果如下:

[[1. 0. 0.][0. 1. 0.][0. 0. 1.]]

这也就是3行3列的方阵,单位矩阵一定是方阵。不过该方法实际上可以不产生方阵,如将其改为np.eye(3, 4),那么就得到3行4列的如下输出:

[[1. 0. 0. 0.][0. 1. 0. 0.][0. 0. 1. 0.]]

其类型是numpy.ndarray,可以用e.shape属性获取其shape信息。

2. TensorFlow的变量也是可以用shape直接获取其shape属性的,如:

import tensorflow as tfa = tf.get_variable('a', [2, 3], initializer=tf.random_normal_initializer(mean=0, stddev=1))init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print('a:\n', sess.run(a))print(type(a))print(a.shape)

这里面变量a是2行3列的矩阵,其类型是tensorflow.python.ops.variables.Variable,虽然不是numpy.ndarray,但是用a.shape是没问题的。接着,TensorFlow有tf.shape(x)和x.get_shape()两个方法,和以上有什么不同呢?加上print(tf.shape(a)),得到的是:

Tensor("Shape:0", shape=(2,), dtype=int32)

所以对于tf.shape(x),x可以是tensor,也可以不是,其返回值是一个tensor。shape=(2,)也就是个二维矩阵了,接着 print(sess.run(tf.shape(a)))确定运行后其二维各自大小,得到:

[2 3]

也就是该二维矩阵第一个维度(行)是2,第二个维度(列)是3。

这篇关于TensorFlow random_crop和multinomial等方法学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094154

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验