【JAVA入门】Day23 - 查找算法

2024-08-21 16:36
文章标签 java 算法 入门 查找 day23

本文主要是介绍【JAVA入门】Day23 - 查找算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【JAVA入门】Day23 - 查找算法


文章目录

  • 【JAVA入门】Day23 - 查找算法
    • 一、基本查找
    • 二、二分查找 / 折半查找
    • 三、分块查找


        查找算法我们常用的有:

  • 基本查找
  • 二分查找 / 折半查找
  • 分块查找
  • 插值查找
  • 斐波那契查找
  • 树表查找
  • 哈希查找

        这里我们着重讲解前三种,其他查找方式除了树表查找,都是前三种的扩展。

一、基本查找

131 127 147 81 103 23 7 79

        在一堆数据中找出想要的数据,只需要将它们放入一个容器中,挨个遍历,直到找到想要的数据。

package BasciSeach;public class BasicSearchDemo1 {public static void main(String[] args) {//从0索引开始挨个往后查找//基本查找/顺序查找//数据:{131, 127, 147, 81, 103, 23, 7, 79}//需求:是否存在int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};int num = 18;boolean result = basicSearch(arr, num);System.out.println(result);}//参数://一:数组//二:要查找的元素public static boolean basicSearch(int[] arr, int num) {//利用基本查找number是否在数组中存在for(int i = 0; i < arr.length; i++) {if(arr[i] == num){return true;}}return false;}
}

        利用基本查找,返回元素的索引(不考虑有无重复元素)。

package BasciSeach;public class BasicSearchDemo2 {public static void main(String[] args) {//从0索引开始挨个往后查找//基本查找/顺序查找//数据:{131, 127, 147, 81, 103, 23, 7, 79}//需求:返回索引int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};int num = 7;int index = basicSearch(arr, num);if(index > 0) {System.out.println(index);}else{System.out.println("未找到元素");}}//参数://一:数组//二:要查找的元素public static int basicSearch(int[] arr, int num) {//利用基本查找number是否在数组中存在for(int i = 0; i < arr.length; i++) {if(arr[i] == num){return i;}}return -1;}
}

        利用基本查找,返回元素的所有索引(考虑有重复元素)。

package BasciSeach;import java.util.ArrayList;public class BasicSearchDemo3 {public static void main(String[] args) {//利用基本查找,返回元素的索引(考虑有重复元素)//返回所有索引int[] arr = {131, 127, 147, 81, 103, 23, 7, 81};int num = 81;ArrayList<Integer> list = basicSearch(arr, num);System.out.print("[");for(int i = 0; i < list.size(); i++) {if(i < list.size() - 1) {System.out.print(list.get(i) + ", ");}else{System.out.print(list.get(i));}}System.out.print("]" + "\n");}//心得://如果要返回多个数据的话,可以放入集合中public static ArrayList<Integer> basicSearch(int[] arr, int num) {ArrayList<Integer> list = new ArrayList<>();for(int i = 0 ; i < arr.length; i++) {if(arr[i] == num) {list.add(i);}}return list;}
}

二、二分查找 / 折半查找

        二分查找的数据有前提要求:数据必须是有序的。可以是从小到大排列,也可以是从大到小排列。
        二分查找的核心逻辑就是:每次排除一半的查找范围。因此查找效率比基本查找快很多。
        定义两个变量,min 指向 0 索引,max 指向 最大索引,(max + min)/ 2 可以得到中间的索引 mid。此时看该索引和要查找的数据大小关系,如果它比要查找的数据大,那么该数据所在的范围一定在 mid 索引的左半边,此时可以直接令 max = mid - 1,缩小索引范围;如果它比要查找的数据小,那么该数据所在范围一定在 mid 索引的右半边,此时可以直接令 min = mid + 1,缩小索引范围。重复此流程,直到max == min,此时就能找到所找的数据。如果要被查找的数据不存在,程序就会继续执行刚刚的逻辑,此时会发生 min > max,循环结束。

package BasciSeach;public class BinarySearchDemo1 {public static void main(String[] args) {//二分查找//{7, 23, 79, 81, 103, 127, 131, 147}int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};int number = 81;System.out.println(binarySearch(arr, number));}public static int binarySearch(int[] arr, int number) {//1.定义两个变量记录要查找的范围int min = 0;int max = arr.length - 1;//2.利用循环不断去找要查找的数据while(true) {if(min > max) {System.out.println("要查找的数据不存在!");return -1;}//3.找到min和max的中间位置int mid = (min + max) / 2;//4.拿着mid指向的元素跟要查找的元素进行比较//4.1number在mid左边//4.2number在mid右边//4.3number跟mid指向的元素一样if(arr[mid] > number) {max = mid - 1;}else if(arr[mid] < number) {min = mid + 1;}else if(arr[mid] == number) {return mid;}}}
}

        二分查找最大的优势就是能提高查找的效率,但是它要求数据必须是有序的。
        如果数据是乱序,先排序再使用二分查找得到的索引没有任何意义,只能知道这个数据是否存在。因为排序之后,数字的位置可能就发生变化了,新的索引没有参考价值。
        二分查找的效率其实可以进一步优化,将 mid 的计算方法改进,如下公式:

mid = min + (key - arr[min]) / (arr[max] - arr[min]) * (max - min);

        其中,key 是要查找的数据。此时这种查找方式就不叫二分查找了,而是叫做插值查找
        还可以利用数学中的黄金分割点的概念进行改进:

mid = min + 黄金分割点左半边长度 - 1

        此时这种查找方法就不叫二分查找了,而是叫做斐波那契查找

三、分块查找

        如果一组数据:块间有序,块内无序。这个时候我们可以应用分块查找
        分块查找的原则在于:

  • 前一块中的最大数据,小于后一块中的所有数据(块内无序,块间有序)。
  • 块数数量一般等于数字的总个数开根号。比如:16个数字一般分为4块左右。

        块对象的定义一般如下所示:

class Block { 			//块int max;  			//块中的最大值int startIndex;		//起始索引int endIndex;		//结束索引
}

        将块对象放到一个数组中统一管理,这个数组一般叫做索引表。通过索引表,我们就能确定要查找的值存在于哪一块当中。
在这里插入图片描述
在这里插入图片描述
        比如上面的数据,我们可以轻易地发现,30就在第三个块当中(这个块级寻找的过程可以用基本查找或二分查找实现)。然后,我们再在块内使用遍历,就可以轻易找到要查找的数据30。

package BasciSeach;public class BlockedSearchDemo1 {public static void main(String[] args) {//1.创建数组blockArr存放每一个块对象的信息//2.先查找blockArr确定要查找的数据属于哪一块//3.再单独遍历这一块数据即可int[] arr = {16, 5, 9, 12, 21, 18,32, 23, 37, 26, 45, 34,50, 48, 61, 52 ,73, 66};//1.把数据分块//分几块:总数开根号 √18 = 4.24 块左右//每块里 18 / 4 = 4.5 个//创建三个块的对象Block b1 = new Block(21,0,5);Block b2 = new Block(32,6,11);Block b3 = new Block(50,12,17);//定义数组用来管理三个块的对象(索引表)Block[] blockArr = {b1, b2, b3};//定义一个变量用来记录要查找的元素int number = 32;//调用方法,传递索引表,数组,要查找的元素,返回要查找的数据索引int index = getIndex(blockArr, arr, number);//打印System.out.println(index);}//利用分块查找的原理,查询number的索引private static int getIndex(Block[] blockArr, int[] arr, int number) {//1.确定number在哪一块中,找到这一块的索引int indexBlock = findIndexBlock(blockArr, number);if(indexBlock == -1){//表示number过大,不在任何一块当中return -1;}//获取这一块的起始索引和结束索引int startIndex = blockArr[indexBlock].getStartIndex();int endIndex = blockArr[indexBlock].getEndIndex();//遍历这一部分的数组for(int i = startIndex; i <= endIndex; i++) {if(arr[i] == number) {return i;}}//遍历完整块都没找到,返回-1return -1;}//定义一个方法,用来确定number在哪一块中private static int findIndexBlock(Block[] blockArr, int number) {/*//创建三个块的对象Block b1 = new Block(21,0,5);Block b2 = new Block(32,6,11);Block b3 = new Block(50,12,17);*///从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的for (int i = 0; i < blockArr.length; i++) {if(number <= blockArr[i].getMax()) {return i;}}//当前数字过大,每一块中都找不到return -1;}
}class Block {private int max;private int startIndex;private int endIndex;public Block() {}public Block(int max, int startIndex, int endIndex) {this.max = max;this.startIndex = startIndex;this.endIndex = endIndex;}public int getMax() {return max;}public int getStartIndex() {return startIndex;}public int getEndIndex() {return endIndex;}
}

        如果数据本身没有规律。只需要保证数据间尚无交集,就可以完成分块。我们可以新增一个 min 变量,来记录每块中最小的值。
在这里插入图片描述
        如果查找的过程中还需要添加新数据呢?常见需求:在1~1000之间获取100个随机数,要求这些数据不重复,那就需要每添加一个数据就进行一次查找,查看该数据是否已经存在。这个时候就可以利用分块查找,把这100个数据分成10块,每一块规定要存储数据的范围。
在这里插入图片描述
        将要生成的数据放在相应块中,在各块中再进行遍历查找。这种查找方式作为分块查找的改进,被重新命名为哈希查找
在这里插入图片描述

这篇关于【JAVA入门】Day23 - 查找算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093691

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys