【JAVA入门】Day23 - 查找算法

2024-08-21 16:36
文章标签 java 算法 入门 查找 day23

本文主要是介绍【JAVA入门】Day23 - 查找算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【JAVA入门】Day23 - 查找算法


文章目录

  • 【JAVA入门】Day23 - 查找算法
    • 一、基本查找
    • 二、二分查找 / 折半查找
    • 三、分块查找


        查找算法我们常用的有:

  • 基本查找
  • 二分查找 / 折半查找
  • 分块查找
  • 插值查找
  • 斐波那契查找
  • 树表查找
  • 哈希查找

        这里我们着重讲解前三种,其他查找方式除了树表查找,都是前三种的扩展。

一、基本查找

131 127 147 81 103 23 7 79

        在一堆数据中找出想要的数据,只需要将它们放入一个容器中,挨个遍历,直到找到想要的数据。

package BasciSeach;public class BasicSearchDemo1 {public static void main(String[] args) {//从0索引开始挨个往后查找//基本查找/顺序查找//数据:{131, 127, 147, 81, 103, 23, 7, 79}//需求:是否存在int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};int num = 18;boolean result = basicSearch(arr, num);System.out.println(result);}//参数://一:数组//二:要查找的元素public static boolean basicSearch(int[] arr, int num) {//利用基本查找number是否在数组中存在for(int i = 0; i < arr.length; i++) {if(arr[i] == num){return true;}}return false;}
}

        利用基本查找,返回元素的索引(不考虑有无重复元素)。

package BasciSeach;public class BasicSearchDemo2 {public static void main(String[] args) {//从0索引开始挨个往后查找//基本查找/顺序查找//数据:{131, 127, 147, 81, 103, 23, 7, 79}//需求:返回索引int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};int num = 7;int index = basicSearch(arr, num);if(index > 0) {System.out.println(index);}else{System.out.println("未找到元素");}}//参数://一:数组//二:要查找的元素public static int basicSearch(int[] arr, int num) {//利用基本查找number是否在数组中存在for(int i = 0; i < arr.length; i++) {if(arr[i] == num){return i;}}return -1;}
}

        利用基本查找,返回元素的所有索引(考虑有重复元素)。

package BasciSeach;import java.util.ArrayList;public class BasicSearchDemo3 {public static void main(String[] args) {//利用基本查找,返回元素的索引(考虑有重复元素)//返回所有索引int[] arr = {131, 127, 147, 81, 103, 23, 7, 81};int num = 81;ArrayList<Integer> list = basicSearch(arr, num);System.out.print("[");for(int i = 0; i < list.size(); i++) {if(i < list.size() - 1) {System.out.print(list.get(i) + ", ");}else{System.out.print(list.get(i));}}System.out.print("]" + "\n");}//心得://如果要返回多个数据的话,可以放入集合中public static ArrayList<Integer> basicSearch(int[] arr, int num) {ArrayList<Integer> list = new ArrayList<>();for(int i = 0 ; i < arr.length; i++) {if(arr[i] == num) {list.add(i);}}return list;}
}

二、二分查找 / 折半查找

        二分查找的数据有前提要求:数据必须是有序的。可以是从小到大排列,也可以是从大到小排列。
        二分查找的核心逻辑就是:每次排除一半的查找范围。因此查找效率比基本查找快很多。
        定义两个变量,min 指向 0 索引,max 指向 最大索引,(max + min)/ 2 可以得到中间的索引 mid。此时看该索引和要查找的数据大小关系,如果它比要查找的数据大,那么该数据所在的范围一定在 mid 索引的左半边,此时可以直接令 max = mid - 1,缩小索引范围;如果它比要查找的数据小,那么该数据所在范围一定在 mid 索引的右半边,此时可以直接令 min = mid + 1,缩小索引范围。重复此流程,直到max == min,此时就能找到所找的数据。如果要被查找的数据不存在,程序就会继续执行刚刚的逻辑,此时会发生 min > max,循环结束。

package BasciSeach;public class BinarySearchDemo1 {public static void main(String[] args) {//二分查找//{7, 23, 79, 81, 103, 127, 131, 147}int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};int number = 81;System.out.println(binarySearch(arr, number));}public static int binarySearch(int[] arr, int number) {//1.定义两个变量记录要查找的范围int min = 0;int max = arr.length - 1;//2.利用循环不断去找要查找的数据while(true) {if(min > max) {System.out.println("要查找的数据不存在!");return -1;}//3.找到min和max的中间位置int mid = (min + max) / 2;//4.拿着mid指向的元素跟要查找的元素进行比较//4.1number在mid左边//4.2number在mid右边//4.3number跟mid指向的元素一样if(arr[mid] > number) {max = mid - 1;}else if(arr[mid] < number) {min = mid + 1;}else if(arr[mid] == number) {return mid;}}}
}

        二分查找最大的优势就是能提高查找的效率,但是它要求数据必须是有序的。
        如果数据是乱序,先排序再使用二分查找得到的索引没有任何意义,只能知道这个数据是否存在。因为排序之后,数字的位置可能就发生变化了,新的索引没有参考价值。
        二分查找的效率其实可以进一步优化,将 mid 的计算方法改进,如下公式:

mid = min + (key - arr[min]) / (arr[max] - arr[min]) * (max - min);

        其中,key 是要查找的数据。此时这种查找方式就不叫二分查找了,而是叫做插值查找
        还可以利用数学中的黄金分割点的概念进行改进:

mid = min + 黄金分割点左半边长度 - 1

        此时这种查找方法就不叫二分查找了,而是叫做斐波那契查找

三、分块查找

        如果一组数据:块间有序,块内无序。这个时候我们可以应用分块查找
        分块查找的原则在于:

  • 前一块中的最大数据,小于后一块中的所有数据(块内无序,块间有序)。
  • 块数数量一般等于数字的总个数开根号。比如:16个数字一般分为4块左右。

        块对象的定义一般如下所示:

class Block { 			//块int max;  			//块中的最大值int startIndex;		//起始索引int endIndex;		//结束索引
}

        将块对象放到一个数组中统一管理,这个数组一般叫做索引表。通过索引表,我们就能确定要查找的值存在于哪一块当中。
在这里插入图片描述
在这里插入图片描述
        比如上面的数据,我们可以轻易地发现,30就在第三个块当中(这个块级寻找的过程可以用基本查找或二分查找实现)。然后,我们再在块内使用遍历,就可以轻易找到要查找的数据30。

package BasciSeach;public class BlockedSearchDemo1 {public static void main(String[] args) {//1.创建数组blockArr存放每一个块对象的信息//2.先查找blockArr确定要查找的数据属于哪一块//3.再单独遍历这一块数据即可int[] arr = {16, 5, 9, 12, 21, 18,32, 23, 37, 26, 45, 34,50, 48, 61, 52 ,73, 66};//1.把数据分块//分几块:总数开根号 √18 = 4.24 块左右//每块里 18 / 4 = 4.5 个//创建三个块的对象Block b1 = new Block(21,0,5);Block b2 = new Block(32,6,11);Block b3 = new Block(50,12,17);//定义数组用来管理三个块的对象(索引表)Block[] blockArr = {b1, b2, b3};//定义一个变量用来记录要查找的元素int number = 32;//调用方法,传递索引表,数组,要查找的元素,返回要查找的数据索引int index = getIndex(blockArr, arr, number);//打印System.out.println(index);}//利用分块查找的原理,查询number的索引private static int getIndex(Block[] blockArr, int[] arr, int number) {//1.确定number在哪一块中,找到这一块的索引int indexBlock = findIndexBlock(blockArr, number);if(indexBlock == -1){//表示number过大,不在任何一块当中return -1;}//获取这一块的起始索引和结束索引int startIndex = blockArr[indexBlock].getStartIndex();int endIndex = blockArr[indexBlock].getEndIndex();//遍历这一部分的数组for(int i = startIndex; i <= endIndex; i++) {if(arr[i] == number) {return i;}}//遍历完整块都没找到,返回-1return -1;}//定义一个方法,用来确定number在哪一块中private static int findIndexBlock(Block[] blockArr, int number) {/*//创建三个块的对象Block b1 = new Block(21,0,5);Block b2 = new Block(32,6,11);Block b3 = new Block(50,12,17);*///从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的for (int i = 0; i < blockArr.length; i++) {if(number <= blockArr[i].getMax()) {return i;}}//当前数字过大,每一块中都找不到return -1;}
}class Block {private int max;private int startIndex;private int endIndex;public Block() {}public Block(int max, int startIndex, int endIndex) {this.max = max;this.startIndex = startIndex;this.endIndex = endIndex;}public int getMax() {return max;}public int getStartIndex() {return startIndex;}public int getEndIndex() {return endIndex;}
}

        如果数据本身没有规律。只需要保证数据间尚无交集,就可以完成分块。我们可以新增一个 min 变量,来记录每块中最小的值。
在这里插入图片描述
        如果查找的过程中还需要添加新数据呢?常见需求:在1~1000之间获取100个随机数,要求这些数据不重复,那就需要每添加一个数据就进行一次查找,查看该数据是否已经存在。这个时候就可以利用分块查找,把这100个数据分成10块,每一块规定要存储数据的范围。
在这里插入图片描述
        将要生成的数据放在相应块中,在各块中再进行遍历查找。这种查找方式作为分块查找的改进,被重新命名为哈希查找
在这里插入图片描述

这篇关于【JAVA入门】Day23 - 查找算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093691

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Spring MVC如何设置响应

《SpringMVC如何设置响应》本文介绍了如何在Spring框架中设置响应,并通过不同的注解返回静态页面、HTML片段和JSON数据,此外,还讲解了如何设置响应的状态码和Header... 目录1. 返回静态页面1.1 Spring 默认扫描路径1.2 @RestController2. 返回 html2

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为