C++迭代器(STL迭代器)iterator详解

2024-08-21 14:18
文章标签 c++ 详解 stl 迭代 iterator

本文主要是介绍C++迭代器(STL迭代器)iterator详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要访问顺序容器和关联容器中的元素,需要通过“迭代器(iterator)”进行。迭代器是一个变量,相当于容器和操纵容器的算法之间的中介。迭代器可以指向容器中的某个元素,通过迭代器就可以读写它指向的元素。从这一点上看,迭代器和指针类似。

迭代器按照定义方式分成以下四种。

  1. 正向迭代器,定义方法如下:
    容器类名::iterator 迭代器名;

  2. 常量正向迭代器,定义方法如下:
    容器类名::const_iterator 迭代器名;

  3. 反向迭代器,定义方法如下:
    容器类名::reverse_iterator 迭代器名;

  4. 常量反向迭代器,定义方法如下:
    容器类名::const_reverse_iterator 迭代器名;

迭代器用法示例
通过迭代器可以读取它指向的元素,*迭代器名就表示迭代器指向的元素。通过非常量迭代器还能修改其指向的元素。

迭代器都可以进行++操作。反向迭代器和正向迭代器的区别在于:
对正向迭代器进行++操作时,迭代器会指向容器中的后一个元素;
而对反向迭代器进行++操作时,迭代器会指向容器中的前一个元素。

下面的程序演示了如何通过迭代器遍历一个 vector 容器中的所有元素。

#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v;  //v是存放int类型变量的可变长数组,开始时没有元素for (int n = 0; n<5; ++n)v.push_back(n);  //push_back成员函数在vector容器尾部添加一个元素vector<int>::iterator i;  //定义正向迭代器for (i = v.begin(); i != v.end(); ++i) {  //用迭代器遍历容器cout << *i << " ";  //*i 就是迭代器i指向的元素*i *= 2;  //每个元素变为原来的2倍}cout << endl;//用反向迭代器遍历容器for (vector<int>::reverse_iterator j = v.rbegin(); j != v.rend(); ++j)cout << *j << " ";return 0;
}

程序的输出结果是:
0 1 2 3 4
8 6 4 2 0

第 6 行,vector 容器有多个构造函数,如果用无参构造函数初始化,则容器一开始是空的。

第 10 行,begin 成员函数返回指向容器中第一个元素的迭代器。++i 使得 i 指向容器中的下一个元素。end 成员函数返回的不是指向最后一个元素的迭代器,而是指向最后一个元素后面的位置的迭代器,因此循环的终止条件是i != v.end()。

第 16 行定义了反向迭代器用以遍历容器。反向迭代器进行++操作后,会指向容器中的上一个元素。rbegin 成员函数返回指向容器中最后一个元素的迭代器,rend 成员函数返回指向容器中第一个元素前面的位置的迭代器,因此本循环实际上是从后往前遍历整个数组。

如果迭代器指向了容器中最后一个元素的后面或第一个元素的前面,再通过该迭代器访问元素,就有可能导致程序崩溃,这和访问 NULL 或未初始化的指针指向的地方类似。

第 10 行和第 16 行,写++i、++j相比于写i++、j++,程序的执行速度更快。回顾++被重载成前置和后置运算符的例子如下:
CDemo CDemo::operator++ ()
{ //前置++
++n;
return *this;
}
CDemo CDemo::operator ++(int k)
{ //后置++
CDemo tmp(*this); //记录修改前的对象
n++;
return tmp; //返回修改前的对象
}
后置++要多生成一个局部对象 tmp,因此执行速度比前置的慢。同理,迭代器是一个对象,STL 在重载迭代器的++运算符时,后置形式也比前置形式慢。在次数很多的循环中,++i和i++可能就会造成运行时间上可观的差别了。因此,本教程在前面特别提到,对循环控制变量i,要养成写++i、不写i++的习惯。

注意,容器适配器 stack、queue 和 priority_queue 没有迭代器。容器适配器有一些成员函数,可以用来对元素进行访问。
迭代器的功能分类
不同容器的迭代器,其功能强弱有所不同。容器的迭代器的功能强弱,决定了该容器是否支持 STL 中的某种算法。例如,排序算法需要通过随机访问迭代器来访问容器中的元素,因此有的容器就不支持排序算法。

常用的迭代器按功能强弱分为输入、输出、正向、双向、随机访问五种,这里只介绍常用的三种。

  1. 正向迭代器。假设 p 是一个正向迭代器,则 p 支持以下操作:++p,p++,*p。此外,两个正向迭代器可以互相赋值,还可以用==和!=运算符进行比较。

  2. 双向迭代器。双向迭代器具有正向迭代器的全部功能。除此之外,若 p 是一个双向迭代器,则–p和p–都是有定义的。–p使得 p 朝和++p相反的方向移动。

  3. 随机访问迭代器。随机访问迭代器具有双向迭代器的全部功能。若 p 是一个随机访问迭代器,i 是一个整型变量或常量,则 p 还支持以下操作:
    p+=i:使得 p 往后移动 i 个元素。
    p-=i:使得 p 往前移动 i 个元素。
    p+i:返回 p 后面第 i 个元素的迭代器。
    p-i:返回 p 前面第 i 个元素的迭代器。
    p[i]:返回 p 后面第 i 个元素的引用。

此外,两个随机访问迭代器 p1、p2 还可以用 <、>、<=、>= 运算符进行比较。p1<p2的含义是:p1 经过若干次(至少一次)++操作后,就会等于 p2。其他比较方式的含义与此类似。

对于两个随机访问迭代器 p1、p2,表达式p2-p1也是有定义的,其返回值是 p2 所指向元素和 p1 所指向元素的序号之差(也可以说是 p2 和 p1 之间的元素个数减一)。

表1所示为不同容器的迭代器的功能。

表1:不同容器的迭代器的功能
容器 迭代器功能
vector 随机访问
deque 随机访问
list 双向
set / multiset 双向
map / multimap 双向
stack 不支持迭代器
queue 不支持迭代器
priority_queue 不支持迭代器
例如,vector 的迭代器是随机迭代器,因此遍历 vector 容器有以下几种做法。下面的程序中,每个循环演示了一种做法。

【实例】遍历 vector 容器。

#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v(100); //v被初始化成有100个元素for(int i = 0;i < v.size() ; ++i) //size返回元素个数cout << v[i]; //像普通数组一样使用vector容器vector<int>::iterator i;for(i = v.begin(); i != v.end (); ++i) //用 != 比较两个迭代器cout << * i;for(i = v.begin(); i < v.end ();++i) //用 < 比较两个迭代器cout << * i;i = v.begin();while(i < v.end()) { //间隔一个输出cout << * i;i += 2; // 随机访问迭代器支持 "+= 整数"  的操作}
}

list 容器的迭代器是双向迭代器。假设 v 和 i 的定义如下:
list v;
list::const_iterator i;
则以下代码是合法的:
for(i=v.begin(); i!=v.end(); ++i)
cout << *i;
以下代码则不合法:
for(i=v.begin(); i<v.end(); ++i)
cout << *i;
因为双向迭代器不支持用“<”进行比较。以下代码也不合法:
for(int i=0; i<v.size(); ++i)
cout << v[i];
因为 list 不支持随机访问迭代器的容器,也不支持用下标随机访问其元素。

在 C++ 中,数组也是容器。数组的迭代器就是指针,而且是随机访问迭代器。例如,对于数组 int a[10],int * 类型的指针就是其迭代器。则 a、a+1、a+2 都是 a 的迭代器。
迭代器的辅助函数
STL 中有用于操作迭代器的三个函数模板,它们是:
advance(p, n):使迭代器 p 向前或向后移动 n 个元素。
distance(p, q):计算两个迭代器之间的距离,即迭代器 p 经过多少次 + + 操作后和迭代器 q 相等。如果调用时 p 已经指向 q 的后面,则这个函数会陷入死循环。
iter_swap(p, q):用于交换两个迭代器 p、q 指向的值。

要使用上述模板,需要包含头文件 algorithm。下面的程序演示了这三个函数模板的 用法。

#include <list>
#include <iostream>
#include <algorithm> //要使用操作迭代器的函数模板,需要包含此文件
using namespace std;
int main()
{int a[5] = { 1, 2, 3, 4, 5 };list <int> lst(a, a+5);list <int>::iterator p = lst.begin();advance(p, 2);  //p向后移动两个元素,指向3cout << "1)" << *p << endl;  //输出 1)3advance(p, -1);  //p向前移动一个元素,指向2cout << "2)" << *p << endl;  //输出 2)2list<int>::iterator q = lst.end();q--;  //q 指向 5cout << "3)" << distance(p, q) << endl;  //输出 3)3iter_swap(p, q); //交换 2 和 5cout << "4)";for (p = lst.begin(); p != lst.end(); ++p)cout << *p << " ";return 0;
}

程序的输出结果是:

  1. 3
  2. 2
  3. 3
  4. 1 5 3 4 2

这篇关于C++迭代器(STL迭代器)iterator详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093392

相关文章

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很