本文主要是介绍利用python装饰器,客制化图像处理功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- detection_plugin.py
- main.py
- plugin_interface.py
有时间再写
detection_plugin.py
# detection_plugin.py
import cv2
import numpy as np
from plugin_interface import ImageProcessingPluginclass EdgeDetectionPlugin(ImageProcessingPlugin):def process_image(self, image_path):# 读取图像image = cv2.imread(image_path, cv2.IMREAD_COLOR)if image is None:return None, "Image not found"# 转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 边缘检测edges = cv2.Canny(gray, 100, 200)return edges, None
main.py
import sys
import importlib.util
from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QPushButton, QLabel, QVBoxLayout, QWidget, QMessageBox
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import Qt
from plugin_interface import ImageProcessingPluginclass ImageViewer(QWidget):def __init__(self):super().__init__()self.image_label = QLabel()layout = QVBoxLayout()layout.addWidget(self.image_label)self.setLayout(layout)def load_image(self, pixmap):self.image_label.setPixmap(pixmap)def load_image_from_path(self, file_path):pixmap = QPixmap(file_path)self.load_image(pixmap)def display_edges(self, edges):# 转换边缘检测结果为 QPixmap 显示height, width = edges.shapeqimage = QImage(edges.data, width, height, width, QImage.Format_Grayscale8)pixmap = QPixmap.fromImage(qimage)self.load_image(pixmap)class MainWindow(QMainWindow):def __init__(self):super().__init__()self.setWindowTitle('Image Viewer with Plugin')self.setGeometry(100, 100, 800, 600)self.current_plugin = Noneself.file_path = Noneself.plugin_path = Nonecentral_widget = QWidget()self.setCentralWidget(central_widget)layout = QVBoxLayout(central_widget)# 图像查看器self.image_viewer = ImageViewer()layout.addWidget(self.image_viewer)# 加载图像按钮self.load_button = QPushButton('Load Image')self.load_button.clicked.connect(self.load_image)layout.addWidget(self.load_button)# 执行检测按钮self.detect_button = QPushButton('Detect Edges')self.detect_button.clicked.connect(self.detect_edges)layout.addWidget(self.detect_button)# 状态标签self.status_label = QLabel('Status: ')layout.addWidget(self.status_label)# 选择插件按钮self.load_plugin_button = QPushButton('Load Plugin')self.load_plugin_button.clicked.connect(self.load_plugin)layout.addWidget(self.load_plugin_button)def load_image(self):self.file_path, _ = QFileDialog.getOpenFileName(self, 'Open Image File', '', 'Images (*.png *.xpm *.jpg *.bmp)')if self.file_path:self.image_viewer.load_image_from_path(self.file_path)self.status_label.setText(f'Status: Loaded {self.file_path}')def load_plugin(self):# 选择插件文件self.plugin_path, _ = QFileDialog.getOpenFileName(self, 'Select Plugin File', '', 'Python Files (*.py)')if self.plugin_path:try:# 动态加载插件spec = importlib.util.spec_from_file_location("plugin", self.plugin_path)plugin_module = importlib.util.module_from_spec(spec)spec.loader.exec_module(plugin_module)# 假设插件文件中有一个名为 EdgeDetectionPlugin 的类plugin_class = getattr(plugin_module, 'EdgeDetectionPlugin', None)if plugin_class and issubclass(plugin_class, ImageProcessingPlugin):self.current_plugin = plugin_class()QMessageBox.information(self, 'Plugin Loaded', 'Plugin loaded successfully.')else:QMessageBox.warning(self, 'Plugin Error', 'The selected file does not contain a valid ImageProcessingPlugin implementation.')except Exception as e:QMessageBox.warning(self, 'Plugin Error', f'Failed to load plugin: {e}')def detect_edges(self):if not self.file_path:QMessageBox.warning(self, 'No Image Loaded', 'Please load an image first.')returnif not self.current_plugin:QMessageBox.warning(self, 'No Plugin Loaded', 'Please load a plugin first.')returnedges, error = self.current_plugin.process_image(self.file_path)if error:QMessageBox.warning(self, 'Detection Error', error)returnself.image_viewer.display_edges(edges)self.status_label.setText(f'Status: Edges Detected')if __name__ == '__main__':app = QApplication(sys.argv)main_window = MainWindow()main_window.show()sys.exit(app.exec_())
plugin_interface.py
from abc import ABC, abstractmethodclass ImageProcessingPlugin(ABC):@abstractmethoddef process_image(self, image_path):"""处理图像并返回结果"""pass
这篇关于利用python装饰器,客制化图像处理功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!