将光谱数据图片转换成数值格式

2024-08-20 19:52

本文主要是介绍将光谱数据图片转换成数值格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 任务
  • 所需工具
  • 步骤一:安装必要的Python库
  • 步骤二:图像OCR识别
  • 步骤三:提取光谱数值并存储
  • 完整代码

任务

现测量收集到一批目标色彩样本的光谱响应数据截图(图片保存在spectrum_screenshots文件夹内,截图样例见图1)。其中,一个样本的光数据是从波长360纳米(nm)到750纳米分别测量得到的对应光强度值(实数)。
图1所示光谱数据为:7.319(360nm),7.339(370nm),6.860(380nm),…,80.(750nm);Checksum值(所有波长上光谱强度值的和)为790.337。
要求:将486张光谱数据图片转成数值格式
在这里插入图片描述

所需工具

Python: 编程语言
cnocr: 一个中文OCR工具,用于从图片中提取文本
PIL (Python Imaging Library): 用于打开和处理图片
openpyxl: 用于在Excel中创建和编辑工作表

步骤一:安装必要的Python库

在开始之前,确保你已经安装了所有必要的Python库。你可以通过以下命令安装这些库:

pip install cnocr pillow openpyxl

步骤二:图像OCR识别

我们将使用cnocr库从光谱数据图片中提取文本。由于OCR提取出的文本格式可能不一致,我们需要对其进行清理和格式化。以下是处理这些文本的代码:

import os
import re
import cnocr
from PIL import Image
from openpyxl import Workbookdef remove_spaces_around_decimal(input_str):result = []l=len(input_str)for i in range(1,l-1):if input_str[i] == ' ' and input_str[i-1]=='.':continueif input_str[i] == ' ' and input_str[i + 1] == '.':continueif input_str[i] == '.' and input_str[i + 1] == '.':continueif (input_str[i]!='.' and input_str[i]!=' 'and(input_str[i]<'0' or input_str[i]>'9'))and input_str[i + 1] == '.':continueif (input_str[i]!='.' and input_str[i]!=' 'and(input_str[i]<'0' or input_str[i]>'9'))and input_str[i - 1] == '.':continueresult.append(input_str[i])return ''.join(result)

这个函数主要用来清理OCR识别出的文本,去除多余的空格和不必要的字符,确保后续的正则表达式能准确提取数值。

步骤三:提取光谱数值并存储

我们将光谱数据图片文件夹中的每张图片转换为对应的数值格式,并将其保存到Excel文件中。以下是实现这一任务的完整代码:

def extract_float_numbers_from_images(directory):# 初始化 cnocrocr = cnocr.CnOcr()# 创建一个 Excel 工作簿wb = Workbook()ws = wb.active# 添加列标题columns = ["Filename", "360nm", "370nm", "380nm", "390nm", "400nm", "410nm", "420nm", "430nm","440nm","450nm", "460nm", "470nm", "480nm","490nm", "500nm", "510nm", "520nm", "530nm", "540nm","550nm", "560nm", "570nm", "580nm", "590nm", "600nm", "610nm", "620nm","630nm", "640nm", "650nm", "660nm", "670nm", "680nm", "690nm", "700nm", "710nm", "720nm", "730nm", "740nm", "750nm", "Checksum"]ws.append(columns)# 使用正则表达式匹配文件名中的数字部分pattern = r'\d+'# 遍历指定目录下的所有文件for filename in os.listdir(directory):# 仅处理 JPEG 格式的文件if filename.endswith(".jpg"):# 从文件名中提取数字部分match = re.match(pattern, filename)if match:file_number = match.group()file_path = os.path.join(directory, filename)# 使用 cnocr 提取文本text = ocr.ocr(Image.open(file_path))# 合并提取的文本extracted_text = ''for line in text:if 'text' in line:extracted_text += (line['text']+' ')extracted_text = remove_spaces_around_decimal(extracted_text)# 使用正则表达式匹配浮点数的模式float_numbers = re.findall(r'\d+\.\d+', extracted_text)# 创建一个列表,用于存储每行的数据row_data = [filename] + float_numbers# 如果提取的浮点数数量少于所需的列数,则补充空白while len(row_data) < len(columns):row_data.append("")# 将文件名和提取的浮点数写入 Excel 表格ws.append(row_data)# 保存 Excel 文件excel_filename = "extracted_float_numbers.xlsx"wb.save(excel_filename)print(f"Float numbers extracted from images and saved to {excel_filename}")

运行程序
将代码保存为一个Python脚本文件,并在命令行中运行:

python your_script_name.py

效果:
在这里插入图片描述

利用OCR技术从图片中提取光谱数据,并将其转换为数值格式存储在Excel中。这种方法可以用于各种场景下的数据提取和处理。

完整代码

import os
import re
import cnocr
from PIL import Image
from openpyxl import Workbook#由于使用cnocr识别出的字符串存在很多格式上的问题
#我在多次写入表格查看以及输出对照数据之后,写了一个处理这些错误格式的函数,经过函数处理之后得到的字符串基本上都可以完美的经过正则表达式的处理得到41个浮点数
def remove_spaces_around_decimal(input_str):result = []l=len(input_str)for i in range(1,l-1):if input_str[i] == ' ' and input_str[i-1]=='.':continueif input_str[i] == ' ' and input_str[i + 1] == '.':continueif input_str[i] == '.' and input_str[i + 1] == '.':continueif (input_str[i]!='.' and input_str[i]!=' 'and(input_str[i]<'0' or input_str[i]>'9'))and input_str[i + 1] == '.':continueif (input_str[i]!='.' and input_str[i]!=' 'and(input_str[i]<'0' or input_str[i]>'9'))and input_str[i - 1] == '.':continueresult.append(input_str[i])return ''.join(result)
def extract_float_numbers_from_images(directory):# 初始化 cnocrocr = cnocr.CnOcr()# 创建一个 Excel 工作簿wb = Workbook()ws = wb.active# 添加列标题columns = ["Filename", "360nm", "370nm", "380nm", "390nm", "400nm", "410nm", "420nm", "430nm","440nm","450nm", "460nm", "470nm", "480nm","490nm", "500nm", "510nm", "520nm", "530nm", "540nm","550nm", "560nm", "570nm", "580nm", "590nm", "600nm", "610nm", "620nm","630nm", "640nm", "650nm", "660nm", "670nm", "680nm", "690nm", "700nm", "710nm", "720nm", "730nm", "740nm", "750nm", "Checksum"]ws.append(columns)# 使用正则表达式匹配文件名中的数字部分pattern = r'\d+'# 遍历指定目录下的所有文件for filename in os.listdir(directory):# 仅处理 JPEG 格式的文件if filename.endswith(".jpg"):# 从文件名中提取数字部分match = re.match(pattern, filename)if match:file_number = match.group()file_path = os.path.join(directory, filename)# 使用 cnocr 提取文本text = ocr.ocr(Image.open(file_path))# 合并提取的文本extracted_text = ''for line in text:if 'text' in line:extracted_text += (line['text']+' ')extracted_text = remove_spaces_around_decimal(extracted_text)# 使用正则表达式匹配浮点数的模式float_numbers = re.findall(r'\d+\.\d+', extracted_text)# 创建一个列表,用于存储每行的数据row_data = [filename] + float_numbers# 如果提取的浮点数数量少于所需的列数,则补充空白while len(row_data) < len(columns):row_data.append("")# 将文件名和提取的浮点数写入 Excel 表格ws.append(row_data)# 保存 Excel 文件excel_filename = "extracted_float_numbers.xlsx"wb.save(excel_filename)print(f"Float numbers extracted from images and saved to {excel_filename}")# 调用函数并传入图片所在的目录路径
extract_float_numbers_from_images(r'G:\spectrum_screenshots')

这篇关于将光谱数据图片转换成数值格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091030

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1