吴恩达机器学习 第三课 week2 推荐算法(上)

2024-06-24 07:52

本文主要是介绍吴恩达机器学习 第三课 week2 推荐算法(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

01 学习目标

02 推荐算法

2.1 定义      

2.2 应用

2.3 算法

03 协同过滤推荐算法

04 电影推荐系统

4.1 问题描述

4.2 算法实现

05 总结


01 学习目标

     (1)了解推荐算法

     (2)掌握协同过滤推荐算法(Collaborative Filtering Recommender Algorithm)原理

     (3)利用协同过滤算法实现“电影推荐系统”

02 推荐算法

2.1 定义      

      推荐算法是信息过滤系统中的一种技术,旨在预测用户对未接触过的物品的喜好程度,并据此向用户推荐相应的物品。

2.2 应用

     推荐系统广泛应用于电商、社交媒体、音视频平台、新闻资讯等领域,可以提升用户体验、增加用户黏性和促进内容发现。

2.3 算法

      推荐算法大致可以分为以下几类:

03 协同过滤推荐算法

      下面基于一个生活场景来理解协同过滤算法的推荐逻辑。

      假设小强在上午11:30打开饱了么外卖APP搜索附近的菜馆,小强只在APP上进行一次评分,且APP有家最近上架的新菜馆“老狼大盘鸡”。小强进入APP最先看到的会是哪家菜馆呢?我们来算一下!

      假设下表中为该APP的全部数据(表中?表示未评过分或系统无法归类的菜馆): 

基于表中数据,可以提取以下数组(“0”替换“?”):

       菜品特征矩阵(值:0~1):

\textbf{X}_{n\times k}=\begin{bmatrix} 0.03 &0 &1 \\ 0.91& 0.01 & 0.01\\ 0.02& 1 &0.01 \\ 0.95 & 0.01 &0.01 \\ 0&0 & 0 \end{bmatrix}

       用户评分矩阵:

\textbf{Y}_{n\times m}=\begin{bmatrix} 3.5 &0 &0 \\ 4.8& 4.7 & 0\\ 4.3& 0 &5.0 \\ 5.0 & 4.9 &0 \\ 0&4.7 & 0 \end{bmatrix}

       评分判断矩阵(已评为1、未评为0):

\textbf{R}_{n\times m}=\begin{bmatrix} 1 &0 &0 \\ 1& 1 & 0\\ 1& 0 &1 \\ 1 & 1 &0 \\ 0&1 & 0 \end{bmatrix}

        此外,再构造一个用户参数矩阵W和用户参数向量b

\textbf{W}_{m\times k}=\begin{bmatrix} w_{11} &w_{12} &w_{13} \\ w_{21}& w_{22} & w_{23}\\ w_{31}& w_{32} &w_{33} \\ w_{41} & w_{42} &w_{43} \\ w_{51}&w_{52} & w_{53} \end{bmatrix} 

\textbf{b}_{1\times m}=\begin{bmatrix} b_{11} &b_{12}&b_{13} \end{bmatrix}

       由以上5个矩阵,可以构造出预测用户评分的一般式如下:

\textbf{Y}=\textbf{R}*(\textbf{X}\cdot \textbf{W}^T+\textbf{b})=\frac{1}{2}\sum_{j=0}^{n-1}\sum_{i=0}^{m-1}R^{(i,j)}*(W^{(j)}\cdot X^{(i)}+b^{(j)}-Y^{(i,j)})^2

式中,参数阵W和b采用梯度下降法计算得到,同时为防止参数过拟合,成本函数增加正则项,如下所示:

J(\textbf{W},\textbf{b},\textbf{X})=\textbf{Y}+\frac{\lambda }{2}\sum_{i=0}^{m-1}\sum_{t=0}^{k}(X_t^{(i)})^2+\frac{\lambda }{2}\sum_{j=0}^{n-1}\sum_{t=0}^{k}(W_t^{(j)})^2

       由于部分菜馆(老狼大盘鸡)的特征未知,因此增加了X的正则项。饱了么APP会根据成本最小原则预测出参数W和b及特征X,进而得到每位用户对不同菜馆的预测分数。最后预测出的小强的评分高低排序后,依次进行推荐,如下:

       计算结果表明,口碑最好且“小强”没评过分(可能没吃过)的“洛馍村家常菜”排在最前面;而“老狼大盘鸡”是新上的菜馆,其排名竟然是第二,这可能是饱了么的常客“小红”的评论发挥了作用;第三名是“小强”曾经给过高分的“幺妹川菜馆”。完整代码如下:

# 导包
import numpy as np
import tensorflow as tf
from tensorflow import keras# 数据准备
X = np.array([[0.03, 0, 1], [0.91, 0.01, 0.01], [0.02, 1, 0.01], [0.95, 0.01, 0.01], [0, 0, 0]])
Y = np.array([[3.5, 0, 0], [4.8, 4.7, 0], [4.3, 0, 5], [5, 4.9, 0], [0, 4.7, 0]])
R = np.array([[1, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0], [0, 1, 0]])
label_ = ['老味道湘菜馆','周口大盘鸡','幺妹川菜馆','洛馍村家常菜','老狼大盘鸡']# 定义归一化函数、成本函数
def normalizeRatings(Y, R):Ymean = (np.sum(Y*R,axis=1)/(np.sum(R, axis=1)+1e-12)).reshape(-1,1)Ynorm = Y - np.multiply(Ymean, R) return(Ynorm, Ymean)def cofi_cost_func(X, W, b, Y, R, lambda_):"""Returns the cost for the content-based filteringArgs:X (ndarray (num_movies,num_features)): matrix of item featuresW (ndarray (num_users,num_features)) : matrix of user parametersb (ndarray (1, num_users)            : vector of user parametersY (ndarray (num_movies,num_users)    : matrix of user ratings of moviesR (ndarray (num_movies,num_users)    : matrix, where R(i, j) = 1 if the i-th movies was rated by the j-th userlambda_ (float): regularization parameterReturns:J (float) : Cost"""error = tf.linalg.matmul(X, tf.transpose(W)) + b - Yj = tf.boolean_mask(error, tf.cast(R, tf.bool)) ** 2J = 0.5 * tf.reduce_sum(j) + (lambda_ / 2) * (tf.reduce_sum(X **2) + tf.reduce_sum(W **2))return J# 归一化处理
Ynorm, Ymean = normalizeRatings(Y, R)# 定义模型
n, m = Y.shape
k =3tf.random.set_seed(1234)
W = tf.Variable(tf.random.normal((m, k), dtype=tf.float64), name='W')
X = tf.Variable(tf.random.normal((n, k), dtype=tf.float64), name='X')
b = tf.Variable(tf.random.normal((1, m), dtype=tf.float64), name='b')optimizer = keras.optimizers.Adam(learning_rate=0.005)# 训练模型
iterations = 200
lambda_ = 1
for iter in range(iterations):with tf.GradientTape() as tape:cost = cofi_cost_func(X, W, b, Ynorm, R, lambda_)grads = tape.gradient(cost, [X, W, b])optimizer.apply_gradients(zip(grads, [X, W, b]))if iter %20 == 0:print(f'第{iter}次迭代的成本为:{cost.numpy()}')# 预测分数
y = np.matmul(X, np.transpose(W)) + b
y_m = y + Ymean    # 恢复数值
pred = y_m[:,1]    # 选择小强的结果
ix = tf.argsort(pred, direction='DESCENDING')  # 降序排列# 推荐
for i in range(len(ix)):print(f'top{i +1}:{label_[ix[i]]},预测评分:{pred[ix[i]]:0.2f}')

       协同过滤(Collaborative Filtering, CF)中的“协同”二字,其核心意义在于“合作”或“协同工作”,“协同”本质是通过分析用户群或物品群之间的共同行为模式,来推断和预测单个用户的潜在喜好,从而实现个性化推荐。在推荐系统领域,这种“协同”体现在算法利用大量用户的行为数据(如评分、购买历史、浏览记录等),通过分析用户之间的共同偏好或者物品之间的相似性,来实现对用户可能感兴趣但尚未直接接触的物品的推荐。

具体来说,协同过滤算法分为两大类:

  1. 用户协同过滤(User-based Collaborative Filtering):在这种方法中,“协同”意味着算法寻找与目标用户兴趣相似的其他用户群体。算法分析这些相似用户喜欢的物品,并基于这些相似用户的偏好来推荐物品给目标用户。这里,用户之间的“协同”体现在他们的共同兴趣和行为模式上。

  2. 物品协同过滤(Item-based Collaborative Filtering):在物品协同过滤中,“协同”的概念体现为算法识别出经常被相同用户喜欢的物品集合,即使这些用户之间可能没有直接的相似性。换句话说,如果用户A喜欢物品X和Y,用户B也喜欢物品X,那么就可以推断用户B可能也会喜欢物品Y。这里,物品之间的“协同”是基于它们被共同评价或消费的模式。

04 电影推荐系统

4.1 问题描述

      GroupLens  是明尼苏达大学双城分校计算机科学与工程系的一个研究实验室,专注于推荐系统、在线社区、移动和无处不在技术、数字图书馆和本地地理信息系统等领域。

      我们从GroupLens网站的 MovieLens 栏目下载电影数据集,用于构建“电影推荐系统”。

4.2 算法实现

     (1)导入所需模块

import numpy as np
import tensorflow as tf
from tensorflow import keras
from recsys_utils import *

recsys_utils模块内有数据读取函数load_precalc_params_smallload_ratings_small、load_Movie_List_pd以及归一化函数normalizeRatings 

      (2)数据读取

# 读取数据
X, W, b, num_movies, num_features, num_users = load_precalc_params_small()
Y, R = load_ratings_small()
# 读取电影信息并提取名称列
movieList, movieList_df = load_Movie_List_pd()print("Y", Y.shape, "R", R.shape)
print("X", X.shape)
print("W", W.shape)
print("b", b.shape)
print("num_features", num_features)
print("num_movies",   num_movies)
print("num_users",    num_users)
print("movieList:\n",movieList[:5])
print("movieList_df:\n",movieList_df[:5])

       运行以上代码,结果如下:

    

(原始数据集包含由600名用户对9000部电影进行的评价。为了专注于2000年以后的电影,我们将数据集的规模缩小至包含443名用户和4778部电影。该数据集在0.5到5的范围内对电影进行评分,以0.5的步长递增) 

     (3)定义成本函数

def cofi_cost_func_v(X, W, b, Y, R, lambda_):"""Returns the cost for the content-based filteringVectorized for speed. Uses tensorflow operations to be compatible with custom training loop.Args:X (ndarray (num_movies,num_features)): matrix of item featuresW (ndarray (num_users,num_features)) : matrix of user parametersb (ndarray (1, num_users)            : vector of user parametersY (ndarray (num_movies,num_users)    : matrix of user ratings of moviesR (ndarray (num_movies,num_users)    : matrix, where R(i, j) = 1 if the i-th movies was rated by the j-th userlambda_ (float): regularization parameterReturns:J (float) : Cost"""j = (tf.linalg.matmul(X, tf.transpose(W)) + b - Y)*RJ = 0.5 * tf.reduce_sum(j**2) + (lambda_/2) * (tf.reduce_sum(X**2) + tf.reduce_sum(W**2))return J

tf.linalg.matmul(X, tf.transpose(W)) 是一个使用 TensorFlow 库的矩阵乘法函数,其中 XW 是两个张量(tensor),tf.transpose(W) 表示对张量 W 进行转置) 

      (4)目标用户数据提取

      假设推荐目标用户是Tony,Tony的历史评分如下(我们手动添加):

my_ratings = np.zeros(num_movies)          #  Initialize my ratings# 手动添加Tony的评分
my_ratings[2700] = 5   # Toy Story 3 (2010)
my_ratings[2609] = 2   # Persuasion (2007)
my_ratings[929]  = 5   # Lord of the Rings: The Return of the King, The
my_ratings[246]  = 5   # Shrek (2001)
my_ratings[2716] = 3   # Inception
my_ratings[1150] = 5   # Incredibles, The (2004)
my_ratings[382]  = 2   # Amelie (Fabuleux destin d'Amélie Poulain, Le)
my_ratings[366]  = 5   # Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001)
my_ratings[622]  = 5   # Harry Potter and the Chamber of Secrets (2002)
my_ratings[988]  = 3   # Eternal Sunshine of the Spotless Mind (2004)
my_ratings[2925] = 1   # Louis Theroux: Law & Disorder (2008)
my_ratings[2937] = 1   # Nothing to Declare (Rien à déclarer)
my_ratings[793]  = 5   # Pirates of the Caribbean: The Curse of the Black Pearl (2003)
# 已评分电影的索引
my_rated = [i for i in range(len(my_ratings)) if my_ratings[i] > 0]# 将Tony的评分及相应的布尔数组添加至原数据中
Y = np.c_[my_ratings, Y]
R = np.c_[(my_ratings != 0).astype(int), R]print("\n(New user)Tony's ratings:\n")
for i in range(len(my_ratings)):if my_ratings[i] > 0 :print(f'Rated {my_ratings[i]} for  {movieList_df.loc[i,"title"]}')

("my_rated = [i for i in range(len(my_ratings)) if my_ratings[i] > 0]": range(len(my_ratings)) 会生成一个从0 len(my_ratings)-1 的整数序列,如果 my_ratings[i]大于0,那么i 就会被添加到 my_rated 列表中

my_ratings != 0my_ratings 中不等于0的数转为true,等于0的数转为false(布尔数组),astype(int) 将该布尔数组转换为整数数组(0和1)然后用np.c_[] 将两个布尔数组按列合并)

      运行以上代码,结果如下:

      (5)数据归一化

Ynorm, Ymean = normalizeRatings(Y, R)

      (6)定义模型

num_movies, num_users = Y.shape
num_features = 100# 采用tf.Variable 初始化参数
tf.random.set_seed(1234) # for consistent results
W = tf.Variable(tf.random.normal((num_users,  num_features),dtype=tf.float64),  name='W')
X = tf.Variable(tf.random.normal((num_movies, num_features),dtype=tf.float64),  name='X')
b = tf.Variable(tf.random.normal((1,          num_users),   dtype=tf.float64),  name='b')# 设置优化器、学习率
optimizer = keras.optimizers.Adam(learning_rate=1e-1)

      (7)训练模型

iterations = 200
lambda_ = 1
for iter in range(iterations): # 使用TensorFlow的GradientTape记录用于计算成本的操作with tf.GradientTape() as tape:# Compute the costcost_value = cofi_cost_func_v(X, W, b, Ynorm, R, lambda_)# 使用梯度记录器自动获取可训练变量相对于损失的梯度。grads = tape.gradient( cost_value, [X,W,b] )# 通过更新变量的值来进行一次梯度下降,以使损失函数达到最小值。optimizer.apply_gradients( zip(grads, [X,W,b]) )# 打印进度if iter % 20 == 0:print(f"Training loss at iteration {iter}: {cost_value:0.1f}")

      运行以上代码,结果如下:

   

      (8)电影推荐

# 计算概率
p = np.matmul(X.numpy(), np.transpose(W.numpy())) + b.numpy()
# 归一化恢复
pm = p + Ymean
# 提取Tony的数据
my_predictions = pm[:,0]
# sort predictions返回降序索引
ix = tf.argsort(my_predictions, direction='DESCENDING')# 推荐Tony未评价过的电影(从预测评分top17的电影中挑选)
for i in range(17):j = ix[i]if j not in my_rated:print(f'Predicting rating {my_predictions[j]:0.2f} for movie {movieList[j]}')# 测试比对user评分的真实值与预测值
print('\n\nOriginal vs Predicted ratings:\n')
for i in range(len(my_ratings)):if my_ratings[i] > 0:print(f'Original {my_ratings[i]}, Predicted {my_predictions[i]:0.2f} for {movieList[i]}')

       运行以上代码,结果如下:

       上面的代码实现了两个功能:一是向Tony推荐了他从未评分的电影,二是将Tony评过分的13部电影分数与预测分数进行了对比,可以发现,如果考虑四舍五入的话,预测分数与Tony的评分完全一致。

05 总结

     (1)协同过滤算法的原理类似于多元线性回归,包括数据处理、定义模型、拟合参数及预测这4个关键步骤,相较于人工神经网络的“黑箱子”计算,协同过滤算法的计算过程更易理解。

     (2) 在协同过滤算法处理大批量数据时,采用tensorflow的张量计算和GradientTape可以迅速实现梯度下降,可以大幅提升计算效率。

     (3)不同的工程师设计的同类算法,可能推荐结果并不一致,这可能引出道德或伦理问题,比如某些平台会优先推荐利润率大而不是最适合用户的商品。

这篇关于吴恩达机器学习 第三课 week2 推荐算法(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089557

相关文章

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个