【STM32c8t6】AHT20温湿度采集

2024-06-24 05:20

本文主要是介绍【STM32c8t6】AHT20温湿度采集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【STM32c8t6】AHT20温湿度采集

  • 一、探究目的
  • 二、探究原理
    • 2.1 I2C
      • 2.1. 硬件I2C
      • 2.1. 软件I2C
    • 2.2 AHT20数据手册
  • 三、实验过程
    • 3.1 CubeMX配置
    • 3.2 实物接线图
    • 3.3 完整代码
    • 3.4 效果展示
  • 四、探究总结

一、探究目的

  1. 学习I2C总线通信协议,使用STM32F103完成基于I2C协议的AHT20温湿度传感器的数据采集,并将采集的温度-湿度值通过串口输出。具体任务:

    1)解释什么是“软件I2C”和“硬件I2C”? (阅读野火配套教材的第23章“I2C–读写EEPROM”原理章节)

    2)阅读AHT20数据手册,编程实现:每隔2秒钟采集一次温湿度数据,显示到OLED上,同时通过串口发送到上位机的“串口助手”软件。

二、探究原理

2.1 I2C

I2C 通讯协议(Inter-Integrated Circuit)是由Phiilps 公司开发的,由于它引脚少,硬件实
现简单,可扩展性强,不需要USART、CAN 等通讯协议的外部收发设备,现在被广泛地
使用在系统内多个集成电路(IC)间的通讯。

下面我们分别对I2C 协议的物理层及协议层进行讲解。

2.1. 硬件I2C

I2C 通讯设备之间的常用连接方式见下图。
常见的I2C 通讯系统
它的物理层有如下特点:

(1) 它是一个支持设备的总线。“总线”指多个设备共用的信号线。在一个I2C 通讯总线
中,可连接多个I2C 通讯设备,支持多个通讯主机及多个通讯从机。

(2) 一个I2C 总线只使用两条总线线路,一条双向串行数据线(SDA) ,一条串行时钟线
(SCL)
。数据线即用来表示数据,时钟线用于数据收发同步

(3) 每个连接到总线的设备都有一个独立的地址,主机可以利用这个地址进行不同设备之
间的访问。

(4) 总线通过上拉电阻接到电源。当I2C 设备空闲时,会输出高阻态,而当所有设备都空
闲,都输出高阻态时,由上拉电阻把总线拉成高电平。

(5) 多个主机同时使用总线时,为了防止数据冲突,会利用仲裁方式决定由哪个设备占用
总线。

(6) 具有三种传输模式:标准模式传输速率为100kbit/s ,快速模式为400kbit/s ,高速模式
下可达 3.4Mbit/s,但目前大多I2C 设备尚不支持高速模式。

(7) 连接到相同总线的 IC 数量受到总线的最大电容 400pF 限制 。

2.1. 软件I2C

I2C 的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地
址广播等环节。

  1. 通讯的起始和停止信号
    起始和停止信号
    当 SCL 线(时钟线)是高电平时,
    ·SDA 线(数据线)从高电平向低电平切换表示通讯的起始。
    ·SDA 线由低电平向高电平切换表示通讯的停止。

起始和停止信号一般由主机产生。

  1. 数据有效性
    在这里插入图片描述
    时钟线(SCL)高电平时,SDA(数据线)数据才有效。
    反之,时钟线(SCL)低电平时,SDA(数据线)数据变换。

  2. 响应
    响应与非响应信号
    I2C 的数据和地址传输都带响应。响应包括“应答(ACK)”和“非应答(NACK)”两种
    信号。

作为数据接收端(RX)时,当设备(无论主从机)接收到I2C 传输的一个字节数据或地址后,
若希望对方继续发送数据,则需要向对方发送“应答(ACK)”信号,发送方(TX)会继续发送下
一个数据;
若接收端希望结束数据传输,则向对方发送“非应答(NACK)”信号,发送方接
收到该信号后会产生一个停止信号,结束信号传输。

传输时主机产生时钟,在第9 个时钟时,数据发送端会释放SDA 的控制权,由数据接
收端控制SDA,若SDA 为高电平,表示非应答信号(NACK),低电平表示应答信号(ACK)。

2.2 AHT20数据手册

AHT20产品手册a2.pdf

三、实验过程

3.1 CubeMX配置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.2 实物接线图

在这里插入图片描述
注意!SDA接PB7,SCL接PB6,接错或接反数据会相当离谱。
在这里插入图片描述

3.3 完整代码

main.c

/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include<stdio.h>
#include "AHT20-21_DEMO_V1_3.h" 
/* USER CODE END Includes */int main(void)
{/* USER CODE BEGIN 1 */uint32_t CT_data[2]={0,0};volatile int c1,t1;HAL_Delay(500);/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_I2C1_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */AHT20_Init();HAL_Delay(500);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */AHT20_Read_CTdata(CT_data);       //不经过CRC校验,直接读取AHT20的温度和湿度数据    推荐每隔大于1S读一次//AHT20_Read_CTdata_crc(CT_data);  //crc校验后,读取AHT20的温度和湿度数据 c1 = CT_data[0]*1000/1024/1024;  //计算得到湿度值c1(放大了10倍)t1 = CT_data[1]*2000/1024/1024-500;//计算得到温度值t1(放大了10倍)printf("正在检测");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");printf("\r\n");HAL_Delay(1000);printf("温度:%d%d.%d",t1/100,(t1/10)%10,t1%10);printf("湿度:%d%d.%d",c1/100,(c1/10)%10,c1%10);printf("\r\n");printf("等待");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");printf("\r\n");HAL_Delay(1000);}/* USER CODE END 3 */
}

AHT20-21_DEMO_V1_3.h

#ifndef _AHT20_DEMO_
#define _AHT20_DEMO_#include "main.h"  void Delay_N10us(uint32_t t);//延时函数
void SensorDelay_us(uint32_t t);//延时函数
void Delay_4us(void);		//延时函数
void Delay_5us(void);		//延时函数
void Delay_1ms(uint32_t t);	
void AHT20_Clock_Init(void);		//延时函数
void SDA_Pin_Output_High(void)  ; //将PB7配置为输出 , 并设置为高电平, PB7作为I2C的SDA
void SDA_Pin_Output_Low(void);  //将P7配置为输出  并设置为低电平
void SDA_Pin_IN_FLOATING(void);  //SDA配置为浮空输入
void SCL_Pin_Output_High(void); //SCL输出高电平,P6作为I2C的SCL
void SCL_Pin_Output_Low(void); //SCL输出低电平
void Init_I2C_Sensor_Port(void); //初始化I2C接口,输出为高电平
void I2C_Start(void);		 //I2C主机发送START信号
void AHT20_WR_Byte(uint8_t Byte); //往AHT20写一个字节
uint8_t AHT20_RD_Byte(void);//从AHT20读取一个字节
uint8_t Receive_ACK(void);   //看AHT20是否有回复ACK
void Send_ACK(void)	;	  //主机回复ACK信号
void Send_NOT_ACK(void);	//主机不回复ACK
void Stop_I2C(void);	  //一条协议结束
uint8_t AHT20_Read_Status(void);//读取AHT20的状态寄存器
uint8_t AHT20_Read_Cal_Enable(void);  //查询cal enable位有没有使能
void AHT20_SendAC(void); //向AHT20发送AC命令
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num);
void AHT20_Read_CTdata(uint32_t *ct); //没有CRC校验,直接读取AHT20的温度和湿度数据
void AHT20_Read_CTdata_crc(uint32_t *ct); //CRC校验后,读取AHT20的温度和湿度数据
void AHT20_Init(void);   //初始化AHT20
void JH_Reset_REG(uint8_t addr);///重置寄存器
void AHT20_Start_Init(void);///上电初始化进入正常测量状态#endif

AHT20-21_DEMO_V1_3.c

/*******************************************/
/*@版权所有:广州奥松电子有限公司          */
/*@作者:温湿度传感器事业部                */
/*@版本:V1.2                              */
/*******************************************/
#include "main.h" 
#include "AHT20-21_DEMO_V1_3.h" 
#include "gpio.h"
#include "i2c.h"void Delay_N10us(uint32_t t)//延时函数
{uint32_t k;while(t--){for (k = 0; k < 2; k++);//110}
}void SensorDelay_us(uint32_t t)//延时函数
{for(t = t-2; t>0; t--){Delay_N10us(1);}
}void Delay_4us(void)		//延时函数
{	Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);
}
void Delay_5us(void)		//延时函数
{	Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);}void Delay_1ms(uint32_t t)		//延时函数
{while(t--){SensorDelay_us(1000);//延时1ms}
}void SDA_Pin_Output_High(void)   //将PB15配置为输出 , 并设置为高电平, PB15作为I2C的SDA
{HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}void SDA_Pin_Output_Low(void)  //将P15配置为输出  并设置为低电平
{HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}void SDA_Pin_IN_FLOATING(void)  //SDA配置为浮空输入
{GPIO_InitTypeDef  GPIO_InitStruct;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//浮空GPIO_InitStruct.Pin = GPIO_PIN_7;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}void SCL_Pin_Output_High(void) //SCL输出高电平,P6作为I2C的SCL
{HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}void SCL_Pin_Output_Low(void) //SCL输出低电平
{HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}void Init_I2C_Sensor_Port(void) //初始化I2C接口,输出为高电平
{	GPIO_InitTypeDef  GPIO_InitStruct;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出GPIO_InitStruct.Pin = GPIO_PIN_7;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出GPIO_InitStruct.Pin = GPIO_PIN_6;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}
void I2C_Start(void)		 //I2C主机发送START信号
{SDA_Pin_Output_High();SensorDelay_us(8);SCL_Pin_Output_High();SensorDelay_us(8);SDA_Pin_Output_Low();SensorDelay_us(8);SCL_Pin_Output_Low();SensorDelay_us(8);   
}void AHT20_WR_Byte(uint8_t Byte) //往AHT20写一个字节
{uint8_t Data,N,i;	Data=Byte;i = 0x80;for(N=0;N<8;N++){SCL_Pin_Output_Low(); Delay_4us();	if(i&Data){SDA_Pin_Output_High();}else{SDA_Pin_Output_Low();}	SCL_Pin_Output_High();Delay_4us();Data <<= 1;}SCL_Pin_Output_Low();SensorDelay_us(8);   SDA_Pin_IN_FLOATING();SensorDelay_us(8);	
}	uint8_t AHT20_RD_Byte(void)//从AHT20读取一个字节
{uint8_t Byte,i,a;Byte = 0;SCL_Pin_Output_Low();SDA_Pin_IN_FLOATING();SensorDelay_us(8);	for(i=0;i<8;i++){SCL_Pin_Output_High();Delay_5us();a=0;//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;Byte = (Byte<<1)|a;//SCL_Pin_Output_Low();HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);Delay_5us();}SDA_Pin_IN_FLOATING();SensorDelay_us(8);	return Byte;
}uint8_t Receive_ACK(void)   //看AHT20是否有回复ACK
{uint16_t CNT;CNT = 0;SCL_Pin_Output_Low();	SDA_Pin_IN_FLOATING();SensorDelay_us(8);	SCL_Pin_Output_High();	SensorDelay_us(8);	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_15))  && CNT < 100) CNT++;if(CNT == 100){return 0;}SCL_Pin_Output_Low();	SensorDelay_us(8);	return 1;
}void Send_ACK(void)		  //主机回复ACK信号
{SCL_Pin_Output_Low();	SensorDelay_us(8);	SDA_Pin_Output_Low();SensorDelay_us(8);	SCL_Pin_Output_High();	SensorDelay_us(8);SCL_Pin_Output_Low();	SensorDelay_us(8);SDA_Pin_IN_FLOATING();SensorDelay_us(8);
}void Send_NOT_ACK(void)	//主机不回复ACK
{SCL_Pin_Output_Low();	SensorDelay_us(8);SDA_Pin_Output_High();SensorDelay_us(8);SCL_Pin_Output_High();	SensorDelay_us(8);		SCL_Pin_Output_Low();	SensorDelay_us(8);SDA_Pin_Output_Low();SensorDelay_us(8);
}void Stop_I2C(void)	  //一条协议结束
{SDA_Pin_Output_Low();SensorDelay_us(8);SCL_Pin_Output_High();	SensorDelay_us(8);SDA_Pin_Output_High();SensorDelay_us(8);
}uint8_t AHT20_Read_Status(void)//读取AHT20的状态寄存器
{uint8_t Byte_first;	I2C_Start();AHT20_WR_Byte(0x71);Receive_ACK();Byte_first = AHT20_RD_Byte();Send_NOT_ACK();Stop_I2C();return Byte_first;
}uint8_t AHT20_Read_Cal_Enable(void)  //查询cal enable位有没有使能
{uint8_t val = 0;//ret = 0,val = AHT20_Read_Status();if((val & 0x68)==0x08)return 1;else  return 0;}void AHT20_SendAC(void) //向AHT20发送AC命令
{I2C_Start();AHT20_WR_Byte(0x70);Receive_ACK();AHT20_WR_Byte(0xac);//0xAC采集命令Receive_ACK();AHT20_WR_Byte(0x33);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();}//CRC校验类型:CRC8/MAXIM
//多项式:X8+X5+X4+1
//Poly:0011 0001  0x31
//高位放到后面就变成 1000 1100 0x8c
//C现实代码:
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{uint8_t i;uint8_t byte;uint8_t crc=0xFF;for(byte=0; byte<Num; byte++){crc^=(message[byte]);for(i=8;i>0;--i){if(crc&0x80) crc=(crc<<1)^0x31;else crc=(crc<<1);}}return crc;
}void AHT20_Read_CTdata(uint32_t *ct) //没有CRC校验,直接读取AHT20的温度和湿度数据
{volatile uint8_t  Byte_1th=0;volatile uint8_t  Byte_2th=0;volatile uint8_t  Byte_3th=0;volatile uint8_t  Byte_4th=0;volatile uint8_t  Byte_5th=0;volatile uint8_t  Byte_6th=0;uint32_t RetuData = 0;uint16_t cnt = 0;AHT20_SendAC();//向AHT10发送AC命令Delay_1ms(80);//延时80ms左右	cnt = 0;while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态{SensorDelay_us(1508);if(cnt++>=100){break;}}I2C_Start();AHT20_WR_Byte(0x71);Receive_ACK();Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0Send_ACK();Byte_2th = AHT20_RD_Byte();//湿度Send_ACK();Byte_3th = AHT20_RD_Byte();//湿度Send_ACK();Byte_4th = AHT20_RD_Byte();//湿度/温度Send_ACK();Byte_5th = AHT20_RD_Byte();//温度Send_ACK();Byte_6th = AHT20_RD_Byte();//温度Send_NOT_ACK();Stop_I2C();RetuData = (RetuData|Byte_2th)<<8;RetuData = (RetuData|Byte_3th)<<8;RetuData = (RetuData|Byte_4th);RetuData =RetuData >>4;ct[0] = RetuData;//湿度RetuData = 0;RetuData = (RetuData|Byte_4th)<<8;RetuData = (RetuData|Byte_5th)<<8;RetuData = (RetuData|Byte_6th);RetuData = RetuData&0xfffff;ct[1] =RetuData; //温度}void AHT20_Read_CTdata_crc(uint32_t *ct) //CRC校验后,读取AHT20的温度和湿度数据
{volatile uint8_t  Byte_1th=0;volatile uint8_t  Byte_2th=0;volatile uint8_t  Byte_3th=0;volatile uint8_t  Byte_4th=0;volatile uint8_t  Byte_5th=0;volatile uint8_t  Byte_6th=0;volatile uint8_t  Byte_7th=0;uint32_t RetuData = 0;uint16_t cnt = 0;// uint8_t  CRCDATA=0;uint8_t  CTDATA[6]={0};//用于CRC传递数组AHT20_SendAC();//向AHT10发送AC命令Delay_1ms(80);//延时80ms左右	cnt = 0;while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态{SensorDelay_us(1508);if(cnt++>=100){break;}}I2C_Start();AHT20_WR_Byte(0x71);Receive_ACK();CTDATA[0]=Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0Send_ACK();CTDATA[1]=Byte_2th = AHT20_RD_Byte();//湿度Send_ACK();CTDATA[2]=Byte_3th = AHT20_RD_Byte();//湿度Send_ACK();CTDATA[3]=Byte_4th = AHT20_RD_Byte();//湿度/温度Send_ACK();CTDATA[4]=Byte_5th = AHT20_RD_Byte();//温度Send_ACK();CTDATA[5]=Byte_6th = AHT20_RD_Byte();//温度Send_ACK();Byte_7th = AHT20_RD_Byte();//CRC数据Send_NOT_ACK();                           //注意: 最后是发送NAKStop_I2C();if(Calc_CRC8(CTDATA,6)==Byte_7th){RetuData = (RetuData|Byte_2th)<<8;RetuData = (RetuData|Byte_3th)<<8;RetuData = (RetuData|Byte_4th);RetuData =RetuData >>4;ct[0] = RetuData;//湿度RetuData = 0;RetuData = (RetuData|Byte_4th)<<8;RetuData = (RetuData|Byte_5th)<<8;RetuData = (RetuData|Byte_6th);RetuData = RetuData&0xfffff;ct[1] =RetuData; //温度}else{ct[0]=0x00;ct[1]=0x00;//校验错误返回值,客户可以根据自己需要更改}//CRC数据
}void AHT20_Init(void)   //初始化AHT20
{	Init_I2C_Sensor_Port();I2C_Start();AHT20_WR_Byte(0x70);Receive_ACK();AHT20_WR_Byte(0xa8);//0xA8进入NOR工作模式Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();Delay_1ms(10);//延时10ms左右I2C_Start();AHT20_WR_Byte(0x70);Receive_ACK();AHT20_WR_Byte(0xbe);//0xBE初始化命令,AHT20的初始化命令是0xBE,   AHT10的初始化命令是0xE1Receive_ACK();AHT20_WR_Byte(0x08);//相关寄存器bit[3]置1,为校准输出Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();Delay_1ms(10);//延时10ms左右
}
void JH_Reset_REG(uint8_t addr)
{uint8_t Byte_first,Byte_second,Byte_third,Byte_fourth;I2C_Start();AHT20_WR_Byte(0x70);//原来是0x70Receive_ACK();AHT20_WR_Byte(addr);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();Delay_1ms(5);//延时5ms左右I2C_Start();AHT20_WR_Byte(0x71);//Receive_ACK();Byte_first = AHT20_RD_Byte();Send_ACK();Byte_second = AHT20_RD_Byte();Send_ACK();Byte_third = AHT20_RD_Byte();Send_NOT_ACK();Stop_I2C();Delay_1ms(10);//延时10ms左右I2C_Start();AHT20_WR_Byte(0x70);///Receive_ACK();AHT20_WR_Byte(0xB0|addr);寄存器命令Receive_ACK();AHT20_WR_Byte(Byte_second);Receive_ACK();AHT20_WR_Byte(Byte_third);Receive_ACK();Stop_I2C();Byte_second=0x00;Byte_third =0x00;
}void AHT20_Start_Init(void)
{JH_Reset_REG(0x1b);JH_Reset_REG(0x1c);JH_Reset_REG(0x1e);
}int32_t main(void)
{uint32_t CT_data[2];volatile int  c1,t1;/***********************************************************************************//**///①刚上电,产品芯片内部就绪需要时间,延时100~500ms,建议500ms/***********************************************************************************/Delay_1ms(500);/***********************************************************************************//**///②上电第一次发0x71读取状态字,判断状态字是否为0x18,如果不是0x18,进行寄存器初始化/***********************************************************************************/if((AHT20_Read_Status()&0x18)!=0x18){AHT20_Start_Init(); //重新初始化寄存器Delay_1ms(10);}/***********************************************************************************//**///③根据客户自己需求发测量命令读取温湿度数据,当前while(1)循环发测量命令读取温湿度数据,仅供参考/***********************************************************************************/while(1){AHT20_Read_CTdata(CT_data);       //不经过CRC校验,直接读取AHT20的温度和湿度数据    推荐每隔大于1S读一次//AHT20_Read_CTdata_crc(CT_data);  //crc校验后,读取AHT20的温度和湿度数据 c1 = CT_data[0]*100*10/1024/1024;  //计算得到湿度值c1(放大了10倍)t1 = CT_data[1]*200*10/1024/1024-500;//计算得到温度值t1(放大了10倍)下一步客户处理显示数据,}}	

3.4 效果展示

请添加图片描述

四、探究总结

AHT采用I2C接口,因此SDA(数据线)和SCL(时钟线)一定要接对,如果接反数据就乱了,会得到很离谱的结果。因此,在采集数据的时候,如果发现数据十分离谱,除了可以用CRC校验还可以检查一下接线是否有误。

以上则是本次探究全部内容,如有错漏请各位大佬多多指教。

这篇关于【STM32c8t6】AHT20温湿度采集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089270

相关文章

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

Python 爬虫入门 - 基础数据采集

Python网络爬虫是一种强大且灵活的工具,用于从互联网上自动化地获取和处理数据。无论你是数据科学家、市场分析师,还是一个想要深入了解互联网数据的开发者,掌握网络爬虫技术都将为你打开一扇通向丰富数据资源的大门。 在本教程中,我们将从基本概念入手,逐步深入了解如何构建和优化网络爬虫,涵盖从发送请求、解析网页结构到保存数据的全过程,并讨论如何应对常见的反爬虫机制。通过本教程,你将能够构建有效的网络爬

Python 爬虫入门 - 基础数据采集流程拓展

在网络爬虫的世界里,数据就是一切。通过爬虫技术,你可以自动化地收集各种类型的公开数据,从文本和图片到复杂的结构化信息,这些数据为各类分析和应用提供了基础。 本教程将引导你深入了解爬虫可以采集的数据种类,如何有效地获取这些数据,并探讨如何使用代理服务来规避限制与增强爬虫的灵活性。无论是初学者还是有经验的开发者,这些知识都将帮助你在网络数据采集中更加游刃有余。 文章目录 可采集的数据基本操作

景联文科技:专业图像采集服务,助力智能图像分析

景联文科技是专业数据服务公司,致力于为人工智能企业提供从数据采集、清洗到标注的全流程解决方案。协助客户解决AI开发过程中数据处理环节的关键问题,助力企业实现智能化转型。 1.多样化的图像采集服务 景联文科技提供多样化的图像采集服务,涵盖不同应用场景和需求: •高分辨率图像采集:适用于高质量图像需求,如医学影像、工业检测等。 •实时图像采集:适用于需要实时处理的应用场景,如安防监

大隈设备采集

大隈(OKUMA)荣一在名古屋东区成立自己的私人公司,开始制造、销售制面机械。下面是社长的一些介绍:我司自1898年生产·销售制面机开始创业以来,秉承若所需之物世间尚无,必不妥协,独自创造的“破土创新”精神,并将其一脉相承,于1904年开始进行机床的生产。自创业以来,历经120余年,从未间断对先进技术和产品的开发。1963年,作为日本机床制造商,首次自主研发出数控装置“OSP”,利

【Android 多媒体应用】使用MediaCodec将摄像头采集的视频编码为h264

转载自:http://www.cnblogs.com/CoderTian/p/6224605.html MainActivity.java import android.app.Activity;import android.graphics.ImageFormat;import android.hardware.Camera;import android.hardware.Camera

飓风算法2.0上线,百度熊掌号官方说严厉打击恶劣采集行为

飓风算法2.0上线,百度熊掌号官方说严厉打击恶劣采集行为 2018年9月13日百度搜索资源平台发文百度搜索将严厉打击恶劣采集行为,推出飓风算法 2.0。 飓风算法由来 飓风算法是当年百度官方针对恶劣采集为内容主要来源的网站,而推出的一种搜索引擎算法。 飓风算法2.0上线 为了营造良好的搜索内容生态,保护搜索用户的阅读浏览体验,保障优质内容生产方在百度搜索中的权益,百度搜索官方公告将于

【爬虫软件】小红薯评论区采集工具

一、采集目标与应用场景 您好!我利用Python技术自主研发了一款高效的爬虫软件,批量收集小红薯平台上的评论,包括主评论及其下的二级评论。 为了拓宽用户群体,让不具备编程基础的小白用户也能轻松上手,我开发成了界面软件。无需繁琐的Python环境搭建与代码修改,只需简单双击,即可开启采集之旅! 1.1 功能展示 软件界面概览: 如上。 采集成果展示: 直观展示其强大的采集能力。 操作演示

【淘宝采集项目经验分享】商品评论采集 |商品详情采集 |关键词搜索商品信息采集

商品评论采集  1、输入商品ID 2、筛选要抓取评论类型 3、填写要抓取的页数 4、立刻提交-启动测试 5、等爬虫结束后就可以到“爬取结果”里面下载数据 商品详情采集  1、输入商品ID 2、立刻提交-启动爬虫 3、等爬虫结束后就可以到“爬取结果”里面下载数据 taobao.item_get 公共参数 名称类型必须描述keyString是调用key(必须

【经验分享】淘宝商量评论采集系统功能分享|淘宝商品详情采集分享|关键词采集分享

商品评论采集  1、输入商品ID 2、筛选要抓取评论类型 3、填写要抓取的页数 4、立刻提交-启动测试 5、返回数据 响应参数 Version: Date: 名称类型必须示例值描述 rate_content String0衣服面料很好 穿起来很舒服 衣服挺合适的!评论内容 rate_date Date02019-03-16 12:10:24评论日期 pics MIX0["//img