本文主要是介绍leetcode刷题(43)——239. 滑动窗口最大值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
示例:
输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]
解释: 滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 31 [3 -1 -3] 5 3 6 7 31 3 [-1 -3 5] 3 6 7 51 3 -1 [-3 5 3] 6 7 51 3 -1 -3 [5 3 6] 7 61 3 -1 -3 5 [3 6 7] 7
提示:
你可以假设 k 总是有效的,在输入数组不为空的情况下,1 ≤ k ≤ 输入数组的大小。
思路:
遍历数组,将数存放在双向队列中,并用L,R来标记窗口的左边界和右边界。队列中保存的并不是真的数,而是该数值对应的数组下标位置,并且数组中的数要从大到小排序。如果当前遍历的数比队尾的值大,则需要弹出队尾值,直到队列重新满足从大到小的要求。刚开始遍历时,L和R都为0,有一个形成窗口的过程,此过程没有最大值,L不动,R向右移。当窗口大小形成时,L和R一起向右移,每次移动时,判断队首的值的数组下标是否在[L,R]中,如果不在则需要弹出队首的值,当前窗口的最大值即为队首的数。
示例:
输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]解释过程中队列中都是具体的值,方便理解,具体见代码。
初始状态:L=R=0,队列:{}
i=0,nums[0]=1。队列为空,直接加入。队列:{1}
i=1,nums[1]=3。队尾值为1,3>1,弹出队尾值,加入3。队列:{3}
i=2,nums[2]=-1。队尾值为3,-1<3,直接加入。队列:{3,-1}。此时窗口已经形成,L=0,R=2,result=[3]
i=3,nums[3]=-3。队尾值为-1,-3<-1,直接加入。队列:{3,-1,-3}。队首3对应的下标为1,L=1,R=3,有效。result=[3,3]
i=4,nums[4]=5。队尾值为-3,5>-3,依次弹出后加入。队列:{5}。此时L=2,R=4,有效。result=[3,3,5]
i=5,nums[5]=3。队尾值为5,3<5,直接加入。队列:{5,3}。此时L=3,R=5,有效。result=[3,3,5,5]
i=6,nums[6]=6。队尾值为3,6>3,依次弹出后加入。队列:{6}。此时L=4,R=6,有效。result=[3,3,5,5,6]
i=7,nums[7]=7。队尾值为6,7>6,弹出队尾值后加入。队列:{7}。此时L=5,R=7,有效。result=[3,3,5,5,6,7]
通过示例发现R=i,L=R-k+1。由于队列中的值是从大到小排序的,所以每次窗口变动时,只需要判断队首的值是否还在窗口中就行了。
解释一下为什么队列中要存放数组下标的值而不是直接存储数值,因为要判断队首的值是否在窗口范围内,由数组下标取值很方便,而由值取数组下标不是很方便。
class Solution {public int[] maxSlidingWindow(int[] nums, int k) {if(nums == null || nums.length < 2) return nums;// 双向队列 保存当前窗口最大值的数组位置 保证队列中数组位置的数值按从大到小排序LinkedList<Integer> queue = new LinkedList();// 结果数组int[] result = new int[nums.length-k+1];// 遍历nums数组for(int i = 0;i < nums.length;i++){// 保证从大到小 如果前面数小则需要依次弹出,直至满足要求while(!queue.isEmpty() && nums[queue.peekLast()] <= nums[i]){queue.pollLast();}// 添加当前值对应的数组下标queue.addLast(i);// 判断当前队列中队首的值是否有效,就是是否在左边界范围内if(queue.peek() < i-k+1){queue.poll(); } // 当窗口长度为k时 保存当前窗口中最大值if(i+1 >= k){result[i+1-k] = nums[queue.peek()];}}return result;}
}
这篇关于leetcode刷题(43)——239. 滑动窗口最大值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!