运算放大器(运放)低通滤波反相放大器电路和积分器电路

2024-06-24 03:44

本文主要是介绍运算放大器(运放)低通滤波反相放大器电路和积分器电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

低通滤波反相放大器电路

运放积分器电路请访问下行链接
运算放大器(运放)积分器电路

设计目标

输入ViMin输入ViMax输出VoMin输出VoMaxBW:fp电源Vee电源Vcc
–0.1V0.1V–2V2V2kHz–2.5V2.5V

设计说明

这款可调式低通反相放大器电路可将信号电平放大 26dB 或 20V/V。R2 和 C1 可设置此电路的截止频率。此电路的频率响应与无源 RC 滤波器的相同,除非输出按放大器的通带增益进行放大。低通滤波器通常用于音频信号链,此滤波器有时也称为低音增强滤波器
低通滤波反相放大器电路

低通滤波反相放大器电路,和下图区别,主要在于R2取值较小,使工作状态不同,和运放积分电路相似


在这里插入图片描述

运算放大器(运放)积分器电路,和上图区别,主要在于R2取值较大,致使信号主要从电容通过

设计说明

  1. C1 和 R2 可设置低通滤波器截止频率。
  2. 共模电压根据运算放大器的同相输入设置,在这种情况下,输入为 1/2 Vs。
  3. 使用高值电阻器可能会减小电路的相位裕度并在电路中引入额外的噪声。
  4. R2 和 R1 可设置电路增益。
  5. 为音频低音增强应用选择 2kHz 的极点频率 fp。
  6. 避免将电容负载直接放置在放大器的输出,从而更大限度减少稳定性问题。
  7. 大信号性能可能会受到压摆率的限制。因此,应检查数据表中的最大输出摆幅与频率间的关系图,从而更大限度减小转换导致的失真。
  8. 有关运算放大器线性运行区域、稳定性、转换导致的失真、电容负载驱动、驱动 ADC 和带宽的更多信息,请参阅“设计参考”部分。

设计步骤

下面给出了该电路的直流传递函数。
V o = V i × ( − R 2 R 1 ) Vo = Vi \times ( - \frac{R2}{R1} ) Vo=Vi×(R1R2)

  1. 为给定的通带增益选择电阻值。
    G a i n = R 2 R 1 = 20 V V ( 26 d B ) Gain = \frac{R_2}{R_1} = 20\frac{V}{V} (26dB) Gain=R1R2=20VV(26dB)
    R 1 = 1 k Ω R_1 = 1kΩ R1=1kΩ
    R 2 = G a i n × ( R 1 ) = 20 V V × 1 k Ω = 20 k Ω R_2 = Gain \times(R_1)= 20\frac{V}{V}\times 1kΩ=20kΩ R2=Gain×(R1)=20VV×1kΩ=20kΩ
  2. 选择低通滤波器极点频率 fp。
    f p = 2 k H z f_p=2kHz fp=2kHz
  3. 使用 R2 设置 fp 的位置,计算 C1。
    f p = 1 2 × π × R 2 × C 1 = 2 k H z f_p=\frac{1}{2 \times π \times R_2 \times C_1}=2kHz fp=2×π×R2×C11=2kHz
    C 1 = 1 2 × π × R 2 × f p = 1 2 × π × 20 K Ω × 2 K h z = 3.98 n F ≈ 3.9 n F ( S t a n d a r d V a l u e ) C_1=\frac{1}{2 \times π \times R_2 \times f _p}=\frac{1}{2 \times π \times 20K\Omega \times 2Khz}=3.98nF \approx3.9 nF (Standard Value) C1=2×π×R2×fp1=2×π×20KΩ×2Khz1=3.98nF3.9nF(StandardValue)
  4. 计算更大限度降低转换导致的失真所需的最小压摆率。
    V p = S R 2 × π × f p → S R > 2 × π × f p × V p V_p=\frac{SR}{2 \times π \times f_p } → SR > 2 \times π \times f_p \times V_p Vp=2×π×fpSRSR>2×π×fp×Vp
    S R > 2 × π × 2 k H z × 2 V = 0.025 V u s SR > 2 \times π \times 2kHz \times 2V = 0.025 \frac{V}{us} SR>2×π×2kHz×2V=0.025usV
  5. S R T L V 9002 = 2 V / µ s SR_{TLV9002} = 2V/µs SRTLV9002=2Vs,因此它满足该要求

设计仿真

交流仿真结果

交流仿真结果

交流仿真结果

瞬态仿真结果

100Hz、0.2Vpp 的正弦波可产生 4Vpp 的输出正弦波。
100Hz、0.2Vpp 的正弦波可产生 4Vpp 的输出正弦波

100Hz、0.2Vpp 的正弦波可产生 4Vpp 的输出正弦波

100kHz、0.2Vpp 的正弦波可产生 0.1Vpp 的输出正弦波。
100kHz、0.2Vpp 的正弦波可产生 0.1Vpp 的输出正弦波。

100kHz、0.2Vpp 的正弦波可产生 0.1Vpp 的输出正弦波。

设计采用的运算放大器TLV9002

Vss1.8V 至 5.5V
VinCM轨到轨
Vout轨到轨
Vos0.4mV
Iq60µA
Ib5pA
UGBW1MHz
SR2V/µs
通道数1、2、4

设计备选运算放大器OPA375

Vss2.25V 至 5.5V
VinCMVee 至 Vcc –1.2V
Vout轨到轨
Vos0.15mV
Iq890µA
Ib10pA
UGBW10MHz
SR4.75V/µs
通道数1

这篇关于运算放大器(运放)低通滤波反相放大器电路和积分器电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089083

相关文章

Aigtek:功率放大器可以分为哪几种

功率放大器是一种广泛应用于电子领域的设备,用于将低功率信号放大到较大功率水平。根据不同的工作原理、电路结构和应用领域,功率放大器可以分为多种类型。在本文中,安泰电子将为您介绍一些常见的功率放大器类型。   A类功率放大器:A类功率放大器是最简单、最常见的一种功率放大器类型。它具有较高的线性度,能够提供良好的信号放大效果。在A类功率放大器中,输出晶体管在整个信号周期内都保持导通状态,从而实现对

Circuit Breaker(电路熔断器)模式原理

文章目录 简介参考资料 简介 我们知道,在微服务架构中,一个服务通过远程调用去访问另一个服务是很常见的事,服务运行在不同的进程甚至不同的机器上,服务间的调用可能会一直得不到响应直到超时失败,更严重的是,如果有多个远程调用同时请求了一个没有响应的服务,可能会耗尽系统的资源从而导致跨服务的级联失败,为了防止这种灾难性的结果,有人(据说是一个叫Michael Nygard的人)就提出了

无法解决 equal to 运算中 Chinese_PRC_90_CI_AS 和 Chinese_PRC_BIN 之间的排序规则冲突

这是因为数据库 oa 和 hh 的编码格式不一样导致的 select  groupname as oper_id,name as oper_name from security_users where name collate Chinese_PRC_CI_AS not in (select oper_name from PDA_UsersAndPWD )

热电阻温度计的测量电路

热电阻温度计的测量电路,为达到高精度测量,通常会采用电桥测量原理,并结合适当的热电阻类型和连接方式。 惠斯通电桥是用于测量一组电阻式元件阻值变化的电路。该电路具有两个并联电阻支路,充当激励电压 VEXCITATION 的分压器。每个电阻分压器的标称输出为 VEXCITATION 除以二。在没有施加负载的情况下,元件的电 阻变化 ΔR 等于零。假设有一个理想系统,其中每个元件的标称电阻为 R,每个

Altera的JTAG电路下载模块为何上下拉电阻,不可不知的秘密

一、FPGA背景信息 当前的FPGA市场上有国际和国产两大体系,国际排名,一直很稳定,国际上前三名Xilinx、Altera、Lattice,国内FPG厂商也在填补空白,低端、中低端市场上发力,替代潮流已在兴起,目前国内前五,分别是京威齐力、安路科技、广州高云、复旦微电子、西安智多晶,国货当自强,真的很厉害。 FPGA随着人工智能、大数据、云计算、数据中心而越发收到重视,对于我们硬件工程师来说

不使用判断比较符比较两个整数的大小(位运算)

在不使用判断操作符和比较操作符情况下判断两个整数的大小, 关于C# 的运算符可以查看官方说明: https://msdn.microsoft.com/zh-cn/library/xt18et0d(v=vs.80).aspx int Min(int a ,int b){int c =a-b;int sa=sign(a);int sb=sign(b);int sc=sign(

电路笔记(电源模块) :LM3481MM/NOPB升压模块,升压电路原理

LM3481MM/NOPB LM3481MM/NOPB 是德州仪器(Texas Instruments)的一款广泛应用的DC-DC控制器,常用于电源管理应用,特别是在需要升压(boost)、反激(flyback)、SEPIC或反向配置的场合。LM3481MM/NOPB 通过电流模式 PWM 控制器,适用于各种 DC-DC 转换器拓扑,如升压(Boost)、反激(Flyback)、SEPIC 和反

电路和编程关系

1、电路编程(设计)与软件编程的区别表面上看只是一个图形形式,一个是文字形式;但实质上有很大的不同。2、计算机编程实际上是“按步骤解决问题”:把解决问题的方法分成若干的大步骤,每个大步骤又分为若干个小步骤,一直分下去,直到分不可分;然后计算机就按照步骤来一丝不苟的执行。这种“按步骤解决问题”的思路很利于执行。3、与计算机编程不同,电路是连续工作的,没有“步骤”一说。数据(电流或电压)持续的流入

VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南

VFB电压反馈和CFB电流反馈运算放大器(运放)选择指南 电流反馈和电压反馈具有不同的应用优势。在很多应用中,CFB和VFB的差异并不明显。当今的许多高速CFB和VFB放大器在性能上不相上下,但各有其优缺点。本指南将考察与这两种拓扑结构相关的重要考虑因素。 VFB和CFB运算放大器的直流及运行考虑因素 VFB运算放大器 对于要求高开环增益、低失调电压和低偏置电流的精密低频应用,VFB运算放

c语言移位运算超出类型所能表示的范围告警

错误代码: *(unsigned int *)GPIOC_CRH &= ~(0xf << 28); 告警内容: integer operation result is out of range 分析:  integer operation result is out of range是因为在尝试对一个32位整型执行移位操作时超出了该类型所能表示的范围。在C语言中,整型字面量(如0xf