第T2周:彩色图片分类

2024-06-24 03:44
文章标签 分类 t2 彩色图片

本文主要是介绍第T2周:彩色图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

👉 要求:

  • 学习如何编写一个完整的深度学习程序
  • 了解分类彩色图片会灰度图片有什么区别
  • 测试集accuracy到达72%

🦾我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • TensorFlow2

一、 前期准备

1.1. 设置GPU

  • 如果设备上支持GPU就使用GPU,否则使用CPU
  • Mac上的GPU使用mps
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpu0
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')

1.2. 导入数据

使用dataset下载MNIST数据集,并划分好训练集与测试集

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
A local file was found, but it seems to be incomplete or outdated because the auto file hash does not match the original value of 6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce so we will re-download the data.
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 8500s 50us/step

1.3. 归一化

数据归一化作用

● 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。
● 加快学习算法的收敛速度。

更详解的介绍请参考文章:🔗归一化与标准化

# 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。)
train_images, test_images = train_images / 255.0, test_images / 255.0# 查看数据维数信息
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))

1.4. 可视化图片

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()

在这里插入图片描述

二、构建简单的CNN网络

⭐池化层

池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一方面进行特征压缩,提取主要特征,增加平移不变性,减少过拟合风险。但其实池化更多程度上是一种计算性能的一个妥协,强硬地压缩特征的同时也损失了一部分信息,所以现在的网络比较少用池化层或者使用优化后的如SoftPool。

池化层包括最大池化层(MaxPooling)和平均池化层(AveragePooling),均值池化对背景保留更好,最大池化对纹理提取更好)。同卷积计算,池化层计算窗口内的平均值或者最大值。例如通过一个 2*2 的最大池化层,其计算方式如下:
在这里插入图片描述

我们即将构建模型的结构图,我以分别二维和三维的形式展示出来方便大家理解。

  • 平面结构图
    在这里插入图片描述

  • 立体结构图
    在这里插入图片描述

model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3layers.Flatten(),                      #Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取layers.Dense(10)                       #输出层,输出预期结果
])model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================conv2d (Conv2D)             (None, 30, 30, 32)        896       max_pooling2d (MaxPooling2  (None, 15, 15, 32)        0         D)                                                              conv2d_1 (Conv2D)           (None, 13, 13, 64)        18496     max_pooling2d_1 (MaxPoolin  (None, 6, 6, 64)          0         g2D)                                                            conv2d_2 (Conv2D)           (None, 4, 4, 64)          36928     flatten (Flatten)           (None, 1024)              0         dense (Dense)               (None, 64)                65600     dense_1 (Dense)             (None, 10)                650       =================================================================
Total params: 122570 (478.79 KB)
Trainable params: 122570 (478.79 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________2024-06-23 22:16:01.054779: I metal_plugin/src/device/metal_device.cc:1154] Metal device set to: Apple M2
2024-06-23 22:16:01.054802: I metal_plugin/src/device/metal_device.cc:296] systemMemory: 16.00 GB
2024-06-23 22:16:01.054811: I metal_plugin/src/device/metal_device.cc:313] maxCacheSize: 5.33 GB
2024-06-23 22:16:01.054984: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:303] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.
2024-06-23 22:16:01.055316: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:269] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)

三、编译模型

model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
Epoch 1/102024-06-23 22:16:41.825293: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.1563/1563 [==============================] - ETA: 0s - loss: 1.5781 - accuracy: 0.42422024-06-23 22:16:54.304550: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.1563/1563 [==============================] - 13s 8ms/step - loss: 1.5781 - accuracy: 0.4242 - val_loss: 1.3528 - val_accuracy: 0.5133
Epoch 2/10
1563/1563 [==============================] - 12s 8ms/step - loss: 1.2892 - accuracy: 0.5464 - val_loss: 1.2880 - val_accuracy: 0.5617
Epoch 3/10
1563/1563 [==============================] - 12s 8ms/step - loss: 1.3585 - accuracy: 0.5521 - val_loss: 1.6484 - val_accuracy: 0.5155
Epoch 4/10
1563/1563 [==============================] - 12s 8ms/step - loss: 2.0448 - accuracy: 0.5044 - val_loss: 3.0545 - val_accuracy: 0.4380
Epoch 5/10
1563/1563 [==============================] - 12s 8ms/step - loss: 5.7139 - accuracy: 0.4563 - val_loss: 20.7035 - val_accuracy: 0.2908
Epoch 6/10
1563/1563 [==============================] - 12s 8ms/step - loss: 45.9029 - accuracy: 0.3672 - val_loss: 109.2576 - val_accuracy: 0.3624
Epoch 7/10
1563/1563 [==============================] - 12s 8ms/step - loss: 504.0281 - accuracy: 0.2838 - val_loss: 1375.9681 - val_accuracy: 0.2399
Epoch 8/10
1563/1563 [==============================] - 12s 8ms/step - loss: 3719.2263 - accuracy: 0.2359 - val_loss: 6212.4688 - val_accuracy: 0.2268
Epoch 9/10
1563/1563 [==============================] - 12s 8ms/step - loss: 11472.0957 - accuracy: 0.2238 - val_loss: 20005.8828 - val_accuracy: 0.1773
Epoch 10/10
1563/1563 [==============================] - 12s 8ms/step - loss: 25618.4004 - accuracy: 0.2182 - val_loss: 31095.4336 - val_accuracy: 0.2160

五、预测

通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大

plt.imshow(test_images[1])

在这里插入图片描述

输出测试集中第一张图片的预测结果

import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])
 75/313 [======>.......................] - ETA: 0s2024-06-23 22:20:12.257425: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.313/313 [==============================] - 1s 3ms/step
ship

六、模型评估

import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

在这里插入图片描述

print(test_acc)
0.6845156432345124

这篇关于第T2周:彩色图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089077

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

PMP–一、二、三模–分类–14.敏捷–技巧–原型MVP

文章目录 技巧一模14.敏捷--原型法--项目生命周期--迭代型生命周期,通过连续的原型或概念验证来改进产品或成果。每个新的原型都能带来新的干系人新的反馈和团队见解。题目中明确提到需要反馈,因此原型法比较好用。23、 [单选] 一个敏捷团队的任务是开发一款机器人。项目经理希望确保在机器人被实际建造之前,团队能够收到关于需求的早期反馈并相应地调整设计。项目经理应该使用以下哪一项来实现这个目标?

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

电脑驱动分类

电脑驱动程序(驱动程序)是操作系统与硬件设备之间的桥梁,用于使操作系统能够识别并与硬件设备进行通信。以下是常见的驱动分类: 1. 设备驱动程序 显示驱动程序:控制显卡和显示器的显示功能,负责图形渲染和屏幕显示。 示例:NVIDIA、AMD 显示驱动程序。打印机驱动程序:允许操作系统与打印机通信,控制打印任务。 示例:HP、Canon 打印机驱动程序。声卡驱动程序:管理音频输入和输出,与声卡硬件

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

文本分类场景下微调BERT

How to Fine-Tune BERT for Text Classification 论文《How to Fine-Tune BERT for Text Classification?》是2019年发表的一篇论文。这篇文章做了一些实验来分析了如何在文本分类场景下微调BERT,是后面网上讨论如何微调BERT时经常提到的论文。 结论与思路 先来看一下论文的实验结论: BERT模型上面的