第T2周:彩色图片分类

2024-06-24 03:44
文章标签 彩色图片 t2 分类

本文主要是介绍第T2周:彩色图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

👉 要求:

  • 学习如何编写一个完整的深度学习程序
  • 了解分类彩色图片会灰度图片有什么区别
  • 测试集accuracy到达72%

🦾我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • TensorFlow2

一、 前期准备

1.1. 设置GPU

  • 如果设备上支持GPU就使用GPU,否则使用CPU
  • Mac上的GPU使用mps
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpu0
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')

1.2. 导入数据

使用dataset下载MNIST数据集,并划分好训练集与测试集

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
A local file was found, but it seems to be incomplete or outdated because the auto file hash does not match the original value of 6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce so we will re-download the data.
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 8500s 50us/step

1.3. 归一化

数据归一化作用

● 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。
● 加快学习算法的收敛速度。

更详解的介绍请参考文章:🔗归一化与标准化

# 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。)
train_images, test_images = train_images / 255.0, test_images / 255.0# 查看数据维数信息
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))

1.4. 可视化图片

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()

在这里插入图片描述

二、构建简单的CNN网络

⭐池化层

池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一方面进行特征压缩,提取主要特征,增加平移不变性,减少过拟合风险。但其实池化更多程度上是一种计算性能的一个妥协,强硬地压缩特征的同时也损失了一部分信息,所以现在的网络比较少用池化层或者使用优化后的如SoftPool。

池化层包括最大池化层(MaxPooling)和平均池化层(AveragePooling),均值池化对背景保留更好,最大池化对纹理提取更好)。同卷积计算,池化层计算窗口内的平均值或者最大值。例如通过一个 2*2 的最大池化层,其计算方式如下:
在这里插入图片描述

我们即将构建模型的结构图,我以分别二维和三维的形式展示出来方便大家理解。

  • 平面结构图
    在这里插入图片描述

  • 立体结构图
    在这里插入图片描述

model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3layers.Flatten(),                      #Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取layers.Dense(10)                       #输出层,输出预期结果
])model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================conv2d (Conv2D)             (None, 30, 30, 32)        896       max_pooling2d (MaxPooling2  (None, 15, 15, 32)        0         D)                                                              conv2d_1 (Conv2D)           (None, 13, 13, 64)        18496     max_pooling2d_1 (MaxPoolin  (None, 6, 6, 64)          0         g2D)                                                            conv2d_2 (Conv2D)           (None, 4, 4, 64)          36928     flatten (Flatten)           (None, 1024)              0         dense (Dense)               (None, 64)                65600     dense_1 (Dense)             (None, 10)                650       =================================================================
Total params: 122570 (478.79 KB)
Trainable params: 122570 (478.79 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________2024-06-23 22:16:01.054779: I metal_plugin/src/device/metal_device.cc:1154] Metal device set to: Apple M2
2024-06-23 22:16:01.054802: I metal_plugin/src/device/metal_device.cc:296] systemMemory: 16.00 GB
2024-06-23 22:16:01.054811: I metal_plugin/src/device/metal_device.cc:313] maxCacheSize: 5.33 GB
2024-06-23 22:16:01.054984: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:303] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.
2024-06-23 22:16:01.055316: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:269] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)

三、编译模型

model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
Epoch 1/102024-06-23 22:16:41.825293: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.1563/1563 [==============================] - ETA: 0s - loss: 1.5781 - accuracy: 0.42422024-06-23 22:16:54.304550: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.1563/1563 [==============================] - 13s 8ms/step - loss: 1.5781 - accuracy: 0.4242 - val_loss: 1.3528 - val_accuracy: 0.5133
Epoch 2/10
1563/1563 [==============================] - 12s 8ms/step - loss: 1.2892 - accuracy: 0.5464 - val_loss: 1.2880 - val_accuracy: 0.5617
Epoch 3/10
1563/1563 [==============================] - 12s 8ms/step - loss: 1.3585 - accuracy: 0.5521 - val_loss: 1.6484 - val_accuracy: 0.5155
Epoch 4/10
1563/1563 [==============================] - 12s 8ms/step - loss: 2.0448 - accuracy: 0.5044 - val_loss: 3.0545 - val_accuracy: 0.4380
Epoch 5/10
1563/1563 [==============================] - 12s 8ms/step - loss: 5.7139 - accuracy: 0.4563 - val_loss: 20.7035 - val_accuracy: 0.2908
Epoch 6/10
1563/1563 [==============================] - 12s 8ms/step - loss: 45.9029 - accuracy: 0.3672 - val_loss: 109.2576 - val_accuracy: 0.3624
Epoch 7/10
1563/1563 [==============================] - 12s 8ms/step - loss: 504.0281 - accuracy: 0.2838 - val_loss: 1375.9681 - val_accuracy: 0.2399
Epoch 8/10
1563/1563 [==============================] - 12s 8ms/step - loss: 3719.2263 - accuracy: 0.2359 - val_loss: 6212.4688 - val_accuracy: 0.2268
Epoch 9/10
1563/1563 [==============================] - 12s 8ms/step - loss: 11472.0957 - accuracy: 0.2238 - val_loss: 20005.8828 - val_accuracy: 0.1773
Epoch 10/10
1563/1563 [==============================] - 12s 8ms/step - loss: 25618.4004 - accuracy: 0.2182 - val_loss: 31095.4336 - val_accuracy: 0.2160

五、预测

通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大

plt.imshow(test_images[1])

在这里插入图片描述

输出测试集中第一张图片的预测结果

import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])
 75/313 [======>.......................] - ETA: 0s2024-06-23 22:20:12.257425: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.313/313 [==============================] - 1s 3ms/step
ship

六、模型评估

import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

在这里插入图片描述

print(test_acc)
0.6845156432345124

这篇关于第T2周:彩色图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089077

相关文章

雨量传感器的分类和选型建议

物理原理分类 机械降雨量计(雨量桶):最早使用的降雨量传感器,通过漏斗收集雨水并记录。主要用于长期降雨统计,故障率较低。电容式降雨量传感器:基于两个电极之间的电容变化来计算降雨量。当降雨时,水滴堵住电极空间,改变电容值,从而计算降雨量。超声波式降雨量传感器:利用超声波的反射来计算降雨量。适用于大降雨量的场合。激光雷达式降雨量传感器:利用激光技术测量雨滴的速度、大小和形状等参数,并计算降雨量。主

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

多态的分类

多态分为两种:通用的多态和特定的多态。两者的区别是前者对工作的类型不加限制,允许对不同类型的值执行相同的代码;后者只对有限数量的类型有效,而且对不同类型的值可能要执行不同的代码。 1,通用的多态又分为参数多态(parametric)和包含多态(inclusion); (1)参数多态:采用参数化模板,通过给出不同的类型参数,使得一个结构有多种类型。 例如:泛型   (2)包含多

【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation)

文章目录 一、文章概览(一)问题的提出(二)文章工作 二、理论背景(一)密度比估计DRE(二)去噪扩散模型 三、方法(一)推导分类和去噪之间的关系(二)组合训练方法(三)一步精确的似然计算 四、实验(一)使用两种损失对于实现最佳分类器的重要性(二)去噪结果、图像质量和负对数似然 论文:Classification Diffusion Models: Revitalizing

细粒度图像分类论文阅读笔记

细粒度图像分类论文阅读笔记 摘要Abstract1. 用于细粒度图像分类的聚合注意力模块1.1 文献摘要1.2 研究背景1.3 本文创新点1.4 计算机视觉中的注意力机制1.5 模型方法1.5.1 聚合注意力模块1.5.2 通道注意力模块通道注意力代码实现 1.5.3 空间注意力模块空间注意力代码实现 1.5.4 CBAM注意力机制CBAM注意力代码实现 1.5.5 本文模型整体架构 1.6

Flask中制作博客首页的分类功能(二)

在Flask中制作博客首页的分类功能(一)的基础上,继续下面的教程。 发布文章的时候会为文章添加一些标签(tag),这些tag需要和数据库中Category表的tag进行比较,如果已经存在该tag,那么需要将新发表文章的tag与已存在的表格进行对应,如果不存在则要新建一个category表。 首先在python shell中执行操作。 from sql_test import db, Pos

机器学习算法(二):1 逻辑回归的从零实现(普通实现+多项式特征实现非线性分类+正则化实现三个版本)

文章目录 前言一、普通实现1 数据集准备2 逻辑回归模型3 损失函数4 计算损失函数的梯度5 梯度下降算法6 训练模型 二、多项式特征实现非线性分类1 数据准备与多项式特征构造2 逻辑回归模型 三、逻辑回归 --- 正则化实现1 数据准备2 逻辑回归模型3 正则化损失函数4 计算损失函数的梯度5 梯度下降6 训练模型 总结 前言 今天我们开始介绍逻辑回归的从零开始实现代码了,

选择器的基本分类和扩展选择器

div:行级标签  2个div之间会换行 span:块级标签 p:行级标签:2个p之间会换行,且有个空行

细胞核的分割与分类模型·hover net| 补充文档

小罗碎碎念 这期推文算是hover net系列的一个补充文档,把几个非常重要的脚本拿出来单独做了一个分析,感兴趣的自取。 extract_patches.pyconfig.pydataset.pyopt.pyrun_infer.py 一、extract_patches.py 1-1:加载和处理图像数据集 注意 dataset属于自建函数,所以一定要保证这个文件与你的代码执行文

MATLAB-SSA-CNN-SVM,基于SSA麻雀优化算法优化卷积神经网络CNN结合支持向量机SVM数据分类(多特征输入多分类)

MATLAB-SSA-CNN-SVM,基于SSA麻雀优化算法优化卷积神经网络CNN结合支持向量机SVM数据分类(多特征输入多分类) 1.数据均为Excel数据,直接替换数据就可以运行程序。 2.所有程序都经过验证,保证程序可以运行。 3.具有良好的编程习惯,程序均包含简要注释。 结果展示 获取方式 https://mbd.pub/o/bread/mbd-ZpeYkpZw