【经典算法】LeetCode 22括号生成(Java/C/Python3/Go实现含注释说明,中等)

本文主要是介绍【经典算法】LeetCode 22括号生成(Java/C/Python3/Go实现含注释说明,中等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 作者主页: 🔗进朱者赤的博客

  • 精选专栏:🔗经典算法

  • 作者简介:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名

  • ❤️觉得文章还不错的话欢迎大家点赞👍➕收藏⭐️➕评论,💬支持博主,记得点个大大的关注,持续更新🤞
    ————————————————-

首先,请注意题目链接有误,您提供的链接是LeetCode 14,但题目描述应该是关于LeetCode 22(括号生成)。以下是按照您提供的格式和要求,针对LeetCode 22题目“括号生成”的多种语言实现方式。

目录

  • 题目描述
  • 思路及实现
    • 方式一:回溯法
      • 思路
      • 代码实现
        • Java版本
        • C语言版本
        • Python3版本
        • Go语言版本
      • 复杂度分析
    • 方式二:动态规划
        • 思路**
        • **Java实现**
        • **C++实现**
        • **Python3实现**
        • **Go实现**
      • 复杂度分析
      • 总结
  • 相似题目

  • 标签(题目类型):动态规划

题目描述

给定 n 对括号,生成所有由 n 对括号组成的合法(有效)括号组合。例如,给出 n = 3,生成结果为:
["((()))","(()())","(())()","()(())","()()()"
]

思路及实现

方式一:回溯法

思路

使用回溯法来递归地生成所有可能的括号组合,并在递归过程中检查括号的有效性。

代码实现

Java版本
import java.util.ArrayList;
import java.util.List;public class Solution {public List<String> generateParenthesis(int n) {List<String> result = new ArrayList<>();backtrack(result, "", 0, 0, n);return result;}private void backtrack(List<String> result, String current, int open, int close, int max) {if (current.length() == max * 2) {result.add(current);return;}if (open < max) {backtrack(result, current + "(", open + 1, close, max);}if (close < open) {backtrack(result, current + ")", open, close + 1, max);}}
}

说明:使用回溯法,在递归过程中跟踪已打开的括号数量(open)和已关闭的括号数量(close)。只有当open小于max时,才添加左括号;只有当close小于open时,才添加右括号。

C语言版本
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>void backtrack(char*** result, int* returnSize, char* current, int open, int close, int max, int* currentIndex) {if (strlen(current) == max * 2) {char* temp = (char*)malloc(max * 2 + 1);strcpy(temp, current);result[*returnSize] = temp;(*returnSize)++;return;}if (open < max) {current[(*currentIndex)++] = '(';backtrack(result, returnSize, current, open + 1, close, max, currentIndex);(*currentIndex)--;}if (close < open) {current[(*currentIndex)++] = ')';backtrack(result, returnSize, current, open, close + 1, max, currentIndex);(*currentIndex)--;}
}char** generateParenthesis(int n, int* returnSize) {char* current = (char*)malloc((n * 2 + 1) * sizeof(char));char** result = (char**)malloc(10000 * sizeof(char*)); // Assuming max number of results*returnSize = 0;int currentIndex = 0;backtrack(result, returnSize, current, 0, 0, n, &currentIndex);free(current); // Don't forget to free the allocated memoryreturn result;
}

说明:在C语言中,我们使用动态内存分配来存储结果和当前路径。同样,我们跟踪已打开的括号和已关闭的括号数量。

Python3版本
class Solution:def generateParenthesis(self, n: int) -> List[str]:def backtrack(current, open, close, result):if len(current) == 2 * n:result.append(current)returnif open < n:backtrack(current + '(', open + 1, close, result)if close < open:backtrack(current + ')', open, close + 1, result)result = []backtrack("", 0, 0, result)return result

说明:Python版本相对简洁,利用递归和字符串拼接来生成所有可能的

Go语言版本
package mainimport ("fmt""strconv"
)func generateParenthesis(n int) []string {var result []stringbacktrack(&result, "", 0, 0, n)return result
}func backtrack(result *[]string, current string, open, close, max int) {if len(current) == max*2 {*result = append(*result, current)return}if open < max {backtrack(result, current+"(", open+1, close, max)}if close < open {backtrack(result, current+")", open, close+1, max)}
}func main() {n := 3res := generateParenthesis(n)for _, s := range res {fmt.Println(s)}
}

说明:在Go语言中,我们使用切片来存储结果,并通过backtrack函数递归地生成所有可能的括号组合。

复杂度分析

对于所有语言版本,其时间复杂度和空间复杂度都是相同的。

  • 时间复杂度:O(2^n * n),因为对于n对括号,左括号有n个位置可以放置,每个位置有放和不放两种选择,所以总共有2^n种可能,但是每种可能都需要O(n)的时间来生成和验证括号串。
  • 空间复杂度:O(n * 2^n),在最坏情况下,即所有可能的括号串都需要被存储时,我们需要O(n * 2^n)的空间来存储这些串。在递归过程中,我们还需要额外的栈空间来保存递归调用的上下文,但这部分空间相对于结果空间来说较小,因此通常忽略不计。

方式二:动态规划

(由于动态规划在生成所有可能的组合时不如回溯法直观,通常用于求解某个最优解问题,而不是直接生成所有解,因此这里不给出动态规划的直接实现。但我们可以理解其思路是构建一个表格,其中每个单元格存储了给定括号对数量时的所有有效括号组合。)

当然,以下是使用Markdown语言书写的之前提到的四种编程语言的实现示例,以及关于动态规划结合回溯的额外说明:

思路**

在方式二中,我们将动态规划(DP)与回溯算法结合使用。这种方法的核心思想是,先利用动态规划预处理一些信息,在回溯过程中利用这些信息来减少无效搜索。然而,在生成有效括号这个问题中,由于问题的特殊性,我们实际上可以通过简单的条件判断来实现隐式剪枝,而无需显式构建动态规划表。

Java实现
public class Solution {public List<String> generateParenthesis(int n) {List<String> result = new ArrayList<>();backtrack(result, "", 0, 0, n);return result;}private void backtrack(List<String> result, String current, int open, int close, int max) {if (current.length() == max * 2) {result.add(current);return;}if (open < max) {backtrack(result, current + "(", open + 1, close, max);}if (close < open) {backtrack(result, current + ")", open, close + 1, max);}}
}
C++实现
#include <vector>
#include <string>using namespace std;class Solution {
public:vector<string> generateParenthesis(int n) {vector<string> result;backtrack(result, "", 0, 0, n);return result;}private:void backtrack(vector<string>& result, string current, int open, int close, int max) {if (current.size() == max * 2) {result.push_back(current);return;}if (open < max) {backtrack(result, current + "(", open + 1, close, max);}if (close < open) {backtrack(result, current + ")", open, close + 1, max);}}
};
Python3实现
def generateParenthesis(n):def backtrack(path, open_count, close_count, res):if len(path) == 2 * n:res.append(path)returnif open_count < n:backtrack(path + '(', open_count + 1, close_count, res)if close_count < open_count:backtrack(path + ')', open_count, close_count + 1, res)res = []backtrack("", 0, 0, res)return res
Go实现
package mainimport "fmt"func generateParenthesis(n int) []string {var result []stringbacktrack(&result, "", 0, 0, n)return result
}func backtrack(result *[]string, current string, open, close, max int) {if len(current) == max*2 {*result = append(*result, current)return}if open < max {backtrack(result, current+"(", open+1, close, max)}if close < open {backtrack(result, current+")", open, close+1, max)}
}func main() {res := generateParenthesis(3)for _, s := range res {fmt.Println(s)}
}

复杂度分析

  • 时间复杂度:

由于需要生成并检查所有可能的括号序列(包括无效的),算法在最坏情况下可能会检查接近 2^n 个序列,其中 n 是括号对的数量。
然而,由于算法中使用了隐式剪枝(即确保在任何前缀中左括号数量不少于右括号数量),实际检查的序列数量会远少于 2^n。
因此,虽然时间复杂度是指数级的,但由于剪枝的存在,实际运行时间会比 O(2^n) 要好。
空间复杂度:

  • 空间复杂度
    主要由递归栈的深度和存储结果的列表决定。
    递归栈的深度在最坏情况下为 O(n),其中 n 是括号对的数量。
    存储结果的列表最终会包含所有有效的括号序列,其数量是卡特兰数 C_n,渐进复杂度为 O(4^n / (n^(3/2) * sqrt(π))),但算法运行时的空间复杂度主要由递归栈决定,为 O(n)。
    简而言之,时间复杂度是指数级的但剪枝有效,空间复杂度为 O(n)。

关于动态规划结合回溯

在更复杂的问题中,动态规划表可以用来存储子问题的解,以减少重复计算,并在回溯过程中提供快速查找。然而,在本问题中,由于括号的有效性检查相对简单,我们直接通过递归函数中的参数进行条件判断,实现了高效的回溯,无需额外的动态规划表。这种方法称为“隐式剪枝”,它避免了不必要的搜索,从而提高了算法效率。

总结

方式优点缺点时间复杂度空间复杂度
方式一(回溯法)直观易理解,可以生成所有解可能产生大量重复计算(可通过记忆化搜索优化)O(2^n * n)O(n * 2^n)
方式二(动态规划)(理论上可以优化,但不适合直接生成所有解)实现复杂,不直观O(2^n) 要好。
O(n)

相似题目

相似题目难度链接
LeetCode 32. 最长有效括号困难LeetCode-32
LeetCode 20. 有效的括号简单LeetCode-20

注意:相似题目链接指向的是英文LeetCode,如果需要中文版本,请替换为leetcode-cn.com

欢迎一键三连(关注+点赞+收藏),技术的路上一起加油!!!代码改变世界

  • 关于我:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名),回复暗号,更能获取学习秘籍和书籍等

  • —⬇️欢迎关注下面的公众号:进朱者赤,认识不一样的技术人。⬇️—

这篇关于【经典算法】LeetCode 22括号生成(Java/C/Python3/Go实现含注释说明,中等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088978

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一