本文主要是介绍【经典算法】LeetCode 22括号生成(Java/C/Python3/Go实现含注释说明,中等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
作者主页: 🔗进朱者赤的博客
精选专栏:🔗经典算法
作者简介:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名)
❤️觉得文章还不错的话欢迎大家点赞👍➕收藏⭐️➕评论,💬支持博主,记得点个大大的
关注
,持续更新🤞
————————————————-
首先,请注意题目链接有误,您提供的链接是LeetCode 14,但题目描述应该是关于LeetCode 22(括号生成)。以下是按照您提供的格式和要求,针对LeetCode 22题目“括号生成”的多种语言实现方式。
目录
- 题目描述
- 思路及实现
- 方式一:回溯法
- 思路
- 代码实现
- Java版本
- C语言版本
- Python3版本
- Go语言版本
- 复杂度分析
- 方式二:动态规划
- 思路**
- **Java实现**
- **C++实现**
- **Python3实现**
- **Go实现**
- 复杂度分析
- 总结
- 相似题目
- 标签(题目类型):动态规划
题目描述
给定 n 对括号,生成所有由 n 对括号组成的合法(有效)括号组合。例如,给出 n = 3,生成结果为:
["((()))","(()())","(())()","()(())","()()()"
]
思路及实现
方式一:回溯法
思路
使用回溯法来递归地生成所有可能的括号组合,并在递归过程中检查括号的有效性。
代码实现
Java版本
import java.util.ArrayList;
import java.util.List;public class Solution {public List<String> generateParenthesis(int n) {List<String> result = new ArrayList<>();backtrack(result, "", 0, 0, n);return result;}private void backtrack(List<String> result, String current, int open, int close, int max) {if (current.length() == max * 2) {result.add(current);return;}if (open < max) {backtrack(result, current + "(", open + 1, close, max);}if (close < open) {backtrack(result, current + ")", open, close + 1, max);}}
}
说明:使用回溯法,在递归过程中跟踪已打开的括号数量(open)和已关闭的括号数量(close)。只有当open小于max时,才添加左括号;只有当close小于open时,才添加右括号。
C语言版本
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>void backtrack(char*** result, int* returnSize, char* current, int open, int close, int max, int* currentIndex) {if (strlen(current) == max * 2) {char* temp = (char*)malloc(max * 2 + 1);strcpy(temp, current);result[*returnSize] = temp;(*returnSize)++;return;}if (open < max) {current[(*currentIndex)++] = '(';backtrack(result, returnSize, current, open + 1, close, max, currentIndex);(*currentIndex)--;}if (close < open) {current[(*currentIndex)++] = ')';backtrack(result, returnSize, current, open, close + 1, max, currentIndex);(*currentIndex)--;}
}char** generateParenthesis(int n, int* returnSize) {char* current = (char*)malloc((n * 2 + 1) * sizeof(char));char** result = (char**)malloc(10000 * sizeof(char*)); // Assuming max number of results*returnSize = 0;int currentIndex = 0;backtrack(result, returnSize, current, 0, 0, n, ¤tIndex);free(current); // Don't forget to free the allocated memoryreturn result;
}
说明:在C语言中,我们使用动态内存分配来存储结果和当前路径。同样,我们跟踪已打开的括号和已关闭的括号数量。
Python3版本
class Solution:def generateParenthesis(self, n: int) -> List[str]:def backtrack(current, open, close, result):if len(current) == 2 * n:result.append(current)returnif open < n:backtrack(current + '(', open + 1, close, result)if close < open:backtrack(current + ')', open, close + 1, result)result = []backtrack("", 0, 0, result)return result
说明:Python版本相对简洁,利用递归和字符串拼接来生成所有可能的
Go语言版本
package mainimport ("fmt""strconv"
)func generateParenthesis(n int) []string {var result []stringbacktrack(&result, "", 0, 0, n)return result
}func backtrack(result *[]string, current string, open, close, max int) {if len(current) == max*2 {*result = append(*result, current)return}if open < max {backtrack(result, current+"(", open+1, close, max)}if close < open {backtrack(result, current+")", open, close+1, max)}
}func main() {n := 3res := generateParenthesis(n)for _, s := range res {fmt.Println(s)}
}
说明:在Go语言中,我们使用切片来存储结果,并通过
backtrack
函数递归地生成所有可能的括号组合。
复杂度分析
对于所有语言版本,其时间复杂度和空间复杂度都是相同的。
- 时间复杂度:O(2^n * n),因为对于n对括号,左括号有n个位置可以放置,每个位置有放和不放两种选择,所以总共有2^n种可能,但是每种可能都需要O(n)的时间来生成和验证括号串。
- 空间复杂度:O(n * 2^n),在最坏情况下,即所有可能的括号串都需要被存储时,我们需要O(n * 2^n)的空间来存储这些串。在递归过程中,我们还需要额外的栈空间来保存递归调用的上下文,但这部分空间相对于结果空间来说较小,因此通常忽略不计。
方式二:动态规划
(由于动态规划在生成所有可能的组合时不如回溯法直观,通常用于求解某个最优解问题,而不是直接生成所有解,因此这里不给出动态规划的直接实现。但我们可以理解其思路是构建一个表格,其中每个单元格存储了给定括号对数量时的所有有效括号组合。)
当然,以下是使用Markdown语言书写的之前提到的四种编程语言的实现示例,以及关于动态规划结合回溯的额外说明:
思路**
在方式二中,我们将动态规划(DP)与回溯算法结合使用。这种方法的核心思想是,先利用动态规划预处理一些信息,在回溯过程中利用这些信息来减少无效搜索。然而,在生成有效括号这个问题中,由于问题的特殊性,我们实际上可以通过简单的条件判断来实现隐式剪枝,而无需显式构建动态规划表。
Java实现
public class Solution {public List<String> generateParenthesis(int n) {List<String> result = new ArrayList<>();backtrack(result, "", 0, 0, n);return result;}private void backtrack(List<String> result, String current, int open, int close, int max) {if (current.length() == max * 2) {result.add(current);return;}if (open < max) {backtrack(result, current + "(", open + 1, close, max);}if (close < open) {backtrack(result, current + ")", open, close + 1, max);}}
}
C++实现
#include <vector>
#include <string>using namespace std;class Solution {
public:vector<string> generateParenthesis(int n) {vector<string> result;backtrack(result, "", 0, 0, n);return result;}private:void backtrack(vector<string>& result, string current, int open, int close, int max) {if (current.size() == max * 2) {result.push_back(current);return;}if (open < max) {backtrack(result, current + "(", open + 1, close, max);}if (close < open) {backtrack(result, current + ")", open, close + 1, max);}}
};
Python3实现
def generateParenthesis(n):def backtrack(path, open_count, close_count, res):if len(path) == 2 * n:res.append(path)returnif open_count < n:backtrack(path + '(', open_count + 1, close_count, res)if close_count < open_count:backtrack(path + ')', open_count, close_count + 1, res)res = []backtrack("", 0, 0, res)return res
Go实现
package mainimport "fmt"func generateParenthesis(n int) []string {var result []stringbacktrack(&result, "", 0, 0, n)return result
}func backtrack(result *[]string, current string, open, close, max int) {if len(current) == max*2 {*result = append(*result, current)return}if open < max {backtrack(result, current+"(", open+1, close, max)}if close < open {backtrack(result, current+")", open, close+1, max)}
}func main() {res := generateParenthesis(3)for _, s := range res {fmt.Println(s)}
}
复杂度分析
- 时间复杂度:
由于需要生成并检查所有可能的括号序列(包括无效的),算法在最坏情况下可能会检查接近 2^n 个序列,其中 n 是括号对的数量。
然而,由于算法中使用了隐式剪枝(即确保在任何前缀中左括号数量不少于右括号数量),实际检查的序列数量会远少于 2^n。
因此,虽然时间复杂度是指数级的,但由于剪枝的存在,实际运行时间会比 O(2^n) 要好。
空间复杂度:
- 空间复杂度
主要由递归栈的深度和存储结果的列表决定。
递归栈的深度在最坏情况下为 O(n),其中 n 是括号对的数量。
存储结果的列表最终会包含所有有效的括号序列,其数量是卡特兰数 C_n,渐进复杂度为 O(4^n / (n^(3/2) * sqrt(π))),但算法运行时的空间复杂度主要由递归栈决定,为 O(n)。
简而言之,时间复杂度是指数级的但剪枝有效,空间复杂度为 O(n)。
关于动态规划结合回溯
在更复杂的问题中,动态规划表可以用来存储子问题的解,以减少重复计算,并在回溯过程中提供快速查找。然而,在本问题中,由于括号的有效性检查相对简单,我们直接通过递归函数中的参数进行条件判断,实现了高效的回溯,无需额外的动态规划表。这种方法称为“隐式剪枝”,它避免了不必要的搜索,从而提高了算法效率。
总结
方式 | 优点 | 缺点 | 时间复杂度 | 空间复杂度 |
---|---|---|---|---|
方式一(回溯法) | 直观易理解,可以生成所有解 | 可能产生大量重复计算(可通过记忆化搜索优化) | O(2^n * n) | O(n * 2^n) |
方式二(动态规划) | (理论上可以优化,但不适合直接生成所有解) | 实现复杂,不直观 | O(2^n) 要好。 | |
O(n) |
相似题目
相似题目 | 难度 | 链接 |
---|---|---|
LeetCode 32. 最长有效括号 | 困难 | LeetCode-32 |
LeetCode 20. 有效的括号 | 简单 | LeetCode-20 |
注意:相似题目链接指向的是英文LeetCode,如果需要中文版本,请替换为leetcode-cn.com
。
欢迎一键三连(关注+点赞+收藏),技术的路上一起加油!!!代码改变世界
关于我:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名),回复暗号,更能获取学习秘籍和书籍等
—⬇️欢迎关注下面的公众号:
进朱者赤
,认识不一样的技术人。⬇️—
这篇关于【经典算法】LeetCode 22括号生成(Java/C/Python3/Go实现含注释说明,中等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!