FFplay源码分析-read_thread

2024-06-24 01:58
文章标签 分析 源码 read thread ffplay

本文主要是介绍FFplay源码分析-read_thread,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《FFmpeg原理》的社群来了,想加入社群的朋友请购买 VIP 版,VIP 版有更高级的内容与答疑服务。


本系列 以 ffmpeg4.2 源码为准,下载地址:链接:百度网盘 提取码:g3k8

FFplay 源码分析系列以一条简单的命令开始,ffplay -i a.mp4。a.mp4下载链接:百度网盘,提取码:nl0s 。


如下图所示,本文主要讲解 read_thread() 函数的内部逻辑。这个流程图是根据上面的命令ffplay -i a.mp4 画的,有些流程我省略了,因为不会执行某些代码,所以有些if判断我没画出来,为了简洁。

在这里插入图片描述

从上面的流程图可以看出, read_thread() 做了一些初始化赋值工作之后,打开视频文件。就会调 stream_component_open() 开启解码线程,这个函数特别重要,下面会仔细讲解。然后就会进去一个 for() 死循环,不断从文件读取 AVPacket,然调用 packet_queue_put() 把 AVPacket 插进去 PacketQueuepacket_queue_put() 也是重点函数,会仔细讲解。

read_thread 线程做的工作其实就这些,非常地简单。

重点函数:

  • stream_component_open()
  • packet_queue_put()

重要知识点:

avformat_open_input() 函数里面的 options 是一个二级指针,他会改变你传进去options,改成没用到的options。然后在后面调用 av_dict_get() 判断返回的options是不是还有值,如果有就报错给出提示。

ffmpeg 很多函数都是如此设计,例如 avcodec_open2(),也是传递一个 二级指针的 options,返回值也会改成没用到的options。

在这里插入图片描述


下面开始讲解 stream_component_open() 的内部逻辑,流程图如下:

在这里插入图片描述

从流程图可以看出, stream_component_open() 做的事情就是这样,先做一些解码器相关的参数赋值,然后调 avcodec_open2() 打开解码器。然后根据音频或者视频做不同处理。视频就直接开线程 video_thread() 进行后续处理。音频就比较复杂一些,会创建 filter_graph,虽然我们的命令参数没用到 filter,但ffplay为了通用,还是会创建一个空的filter graph,暂时不仔细讲解 configure_audio_filters() 函数的实现,后面再写一篇文章结合一条带 -af 参数的ffplay命令进行讲解。现在只需要知道 解码出来的 AVFrame 会经过 in_audio_filter ,然后从 out_audio_filter 出来就行,因为是空的 filter_graph,所以AVFrame是没变化的。audio_open() 函数用来打开音频设备,其内部实现比较复杂,下面会仔细讲解。

重点函数:

  • audio_open()

audio_open() 的代码比较少,所以不画流程图,直接贴代码讲解。

if (!wanted_channel_layout || wanted_nb_channels != av_get_channel_layout_nb_channels(wanted_channel_layout)) {wanted_channel_layout = av_get_default_channel_layout(wanted_nb_channels);wanted_channel_layout &= ~AV_CH_LAYOUT_STEREO_DOWNMIX;
}

上面这段代码特别有意思,在 ffplay.c 里面经常看到这样的判断,判断 channel_layout 跟 channels 是否匹配。应该是一些兼容处理,历史遗留问题。其实我也很疑惑,写入mp4 或 flv 文件的时候,channel_layout 跟 channels字段 难道还会写错,所以需要播放的时候需要纠正一下?我现在写项目,都是照抄这种代码。

wanted_spec.format = AUDIO_S16SYS;

ffplay 只支持 AUDIO_S16SYS 播放格式,原文件如果不是这种格式,后面都会用重采样进行转换格式。

wanted_spec.samples = FFMAX(SDL_AUDIO_MIN_BUFFER_SIZE, 2 << av_log2(wanted_spec.freq / SDL_AUDIO_MAX_CALLBACKS_PER_SEC));

上面的 wanted_spec.samples 是设置 SDL 音频 call_back函数每次回调需要传递多少个 samples 给SDL。这个计算方式比较难懂,我仔细讲一下。wanted_spec.freq 是采用率,如果 freq 等于48000,就是说SDL 每秒播放 48000个sample。SDL_AUDIO_MAX_CALLBACKS_PER_SEC 代表SDL每秒回调多少callback,SDL_AUDIO_MAX_CALLBACKS_PER_SEC 在代码里设置为 30,每秒回调30次。那 (wanted_spec.freq / SDL_AUDIO_MAX_CALLBACKS_PER_SEC) 自然就等于每次回调需要传递的sample数量。那为什么还要用 av_log2() 取指数,然后又用 << 左位移取幂呢?是因为这样做可以把 samples 转换成 2的倍数。例如 48000 / 30 = 1600,1600 并不是 2的倍数,av_log2(1600) 等于 10,然后 2 << 10 等于 2048,最后 wanted_spec.samples 等 2048 ,是2的倍数。为什么要设置成 2的倍数,估计是为了对齐内存,请看SDL 的文档 https://wiki.libsdl.org/SDL_OpenAudioDevice,文档建议设置成2的倍数。

接下来是 audio_open() 里面最难懂的逻辑,请看代码。

static const int next_nb_channels[] = {0, 0, 1, 6, 2, 6, 4, 6};
static const int next_sample_rates[] = {0, 44100, 48000, 96000, 192000};
.....省略代码..
while (!(audio_dev = SDL_OpenAudioDevice(NULL, 0, &wanted_spec, &spec, SDL_AUDIO_ALLOW_FREQUENCY_CHANGE | SDL_AUDIO_ALLOW_CHANNELS_CHANGE))) {av_log(NULL, AV_LOG_WARNING, "SDL_OpenAudio (%d channels, %d Hz): %s\n",wanted_spec.channels, wanted_spec.freq, SDL_GetError());wanted_spec.channels = next_nb_channels[FFMIN(7, wanted_spec.channels)];if (!wanted_spec.channels) {//注意这句代码。wanted_spec.freq = next_sample_rates[next_sample_rate_idx--]; //注意这句代码。wanted_spec.channels = wanted_nb_channels;if (!wanted_spec.freq) {av_log(NULL, AV_LOG_ERROR,"No more combinations to try, audio open failed\n");return -1;}}wanted_channel_layout = av_get_default_channel_layout(wanted_spec.channels);
}

audio_open() 在入口就定义了这么一个数组 next_nb_channels[],0,0,1,6,2,6,4,6。咋一看,不太容易看出来是干啥的。其实就像他那句报错提示说的。

“No more combinations to try, audio open failed”

next_nb_channelsnext_sample_rates 是一个 combination,组合尝试。不断用 不同的采样率,不同的声道来打开音频设备。为什么这样做?

因为有些设备,不支持播放双声道,只支持单声道。但是原文件的音频是双声道的。这种情况下 audio_open() 是如何处理的呢?这时候,next_nb_channelsnext_sample_rates 就排上用场了。

在 audio_open() 的逻辑里,会先尝试用双声道打开音频设备,但是音频设备不支持双声道,while 那里就会失败。然后请注意这句代码。

wanted_spec.channels = next_nb_channels[FFMIN(7, wanted_spec.channels)];

因为 wanted_spec.channels 等于2,所以 next_nb_channels[FFMIN(7, wanted_spec.channels)] 计算出来的结果是 1,所以从逻辑上,就会从双声道变成单声道,重新调 SDL_OpenAudioDevice() 函数尝试打开音频设备。

解析到这里,应该比较清楚 next_nb_channels[] 这个数组那堆0,0,1,6,2,6,4,6 是干什么了,没错,next_nb_channels 其实是一个map表,声道切换映射表。

  • next_nb_channels[7] = 6,从7声道切换到6声道打开音频设备
  • next_nb_channels[6] = 4,从6声道切换到4声道打开音频设备
  • next_nb_channels[5] = 6,从5声道切换到6声道打开音频设备
  • next_nb_channels[4] = 2,从4声道切换到2声道打开音频设备
  • next_nb_channels[3] = 6,从3声道切换到6声道打开音频设备
  • next_nb_channels[2] = 1,从双声道切换到单声道打开音频设备
  • next_nb_channels[1] = 0,单声道都打不开音频设备,无法再切换,需要降低采样率播放。
  • next_nb_channels[0] = 0,0声道都打不开音频设备,无法再切换,需要降低采样率播放。

为什么后面两个 是 0,是因为切换到后面的时候,已经没法再切换了,就会尝试降低采样率。请看代码

 if (!wanted_spec.channels) {//注意这句代码。wanted_spec.freq = next_sample_rates[next_sample_rate_idx--]; //注意这句代码。wanted_spec.channels = wanted_nb_channels;if (!wanted_spec.freq) {av_log(NULL, AV_LOG_ERROR,"No more combinations to try, audio open failed\n");return -1;}
}

next_sample_rate_idx 在开头就赋值为 比 want 采样率小的 index。然后声道都尝试完了,还打不开音频设备,就会尝试更小的采样率,再用新的采样率结合之前的声道都尝试一下打开音频设备。

所以说 next_nb_channelsnext_sample_rates 是一个 combination,组合尝试。


ffplay 源码分析,stream_component_open() 分析完毕。

由于笔者的水平有限, 加之编写的同时还要参与开发工作,文中难免会出现一些错误或者不准确的地方,恳请读者批评指正。

这篇关于FFplay源码分析-read_thread的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088870

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S