ST源码分析-前言

2024-06-24 01:48
文章标签 分析 源码 st 前言

本文主要是介绍ST源码分析-前言,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SRS 的社群来了,想加入微信社群的朋友请购买《SRS原理》电子书,里有更高级的内容与答疑服务。


ST 是 state-thread 的缩写。state-thread 是一个 C 语言实现的协程库,这个库是 8年前的, 《state-thread 官网文档》。

ST 协程优势有以下几点:

1,从性能上来说,ST和传统的EDSM实现几乎一样快。也就是用 ST 跟用 单线程 epoll 一样高效。

2,在内存方面,ST几乎和传统的EDSM一样高效。也就是用 ST 跟用 epoll 一样高效。

3,因为单线程非阻塞 epoll 的架构 会把 请求 跟 回调 分离,这种 请求 跟 回调 分离 的架构 ,这个架构在复杂业务下可能会导致回调地狱的问题。伪代码如下:

dns_udp_data_1 = {xxx}
sendto(dns_udp_data_1)
dns_udp_data_2 = {xxx}
sendto(dns_udp_data_2)
dns_udp_data_3 = {xxx}
sendto(dns_udp_data_3)
​
while(){//等待 3 个udp fdepoll_wait();//处理状态改变的fdrecvfrom(fd);//处理 dns 响应
}

从上面的伪代码可以看到,单线程非阻塞如果不用协程,语法上,请求跟 回调 处理是分开的,比较容易的理解语法应该是 一个 sendto 然后一个 recvfrom,处理完一个任务再执行另一个任务。

使用了 state-thread 就可以合并 sendto 跟 recvfrom, st_sendto() 会阻塞在 st_recvfrom(),但并不是真正的阻塞,而是把 fd 丢进去全局管理器之后,就切换到其他协程执行,因此 st_recvfrom() 并不像 操作系统的 recvform() 一样,会阻塞线程的其他任务。在 ST 里面 阻塞 本质上就是切换上下文,当所有协程都执行完,idle协程就会 epoll_wait() 等待 所有fd 的变化,这里才是真正的阻塞。fd 有变化了,再切换回去之前的 st_recvfrom() 继续执行。

这样就能把 请求 ,对面的respond (回调)合在一起,顺序处理,代码看起来是顺序的。这样 实现 RTMP 这种复杂协议,因为是顺序的,所以写起来就比 epoll 简单很多。


但是我客观说一下,协程方案每次 st_sendto() 跟 st_recvfrom() 之后都会经历一次上下文切换,这个上下文切换大概会执行10多条汇编指令。所以协程方案 做多域名DNS查询 比上面的伪代码执行速度是慢一些的,因为上面的伪代码,3 个 sendto 是线性执行,没有上下文切换。

而且多个协程因为是在单线程里面运行的,所以他们并不是并行的,也就是多个协程操作全局变量不用加锁,这是优势,也是劣势。

单线程多协程开了很多协程处理不同的任务的时候,会非常影响实时性。因为如果多个推流协程跟多个播放线程都在一个线程里面,推流协程有数据了,解复用完了处理完了,是不是应该尽快激活播放协程来处理这个数据?但是如果上下文切换到 播放协程来推送数据到客户端,那推流协程就会阻塞停下来,但是推流客户端不是只推一个包,是有源源不断的数据推送来的。而且如果有多个推流客户端 epoll_wait() 不一定激活的第一个fd 就是 播放端的fd,可能是另一个推流客户端的fd,这样实时性会再打折扣。

解决方案可以这样,开一个线程处理多个推流客户端,开另一个线程处理多个播放客户端。线程里面用多协程。

把相同的任务丢进去一个线程,例如推流端,全部丢进去一个线程,播放端放在另一个线程。线程里面都是多协程,这样就能提高实时性。


虽然上面的代码,DNS查询,不用协程,程序会快一些,这是单线程的情况,如果是复杂系统,多线程,不用协程也会导致上下文切换。举个例子,常见的服务器是这样的,线程A 阻塞在 epoll_wait(),另一个线程B 阻塞在条件变量,线程A激活之后,读到信息,激活线程B去处理,这就有可能导致上下文切换,如果两个线程在不同的核心就不会导致切换。但是协程的情况也是这样,epoll_wait() 之后切换上下文,这是协程的切换上下文是自己做的。

所以在复杂系统下,多线程+多协程 VS 多线程回调,我个人认为还是多线程+多协程高明一些,只要把不同的任务分开线程处理,就能并行,提高实时性。比回调写法简单明了很多,因为客户端足够多的时候,两种场景都会有上下文切换的损耗。

如果不用协程,当业务遇到阻塞操作,例如需要查一下数据库,只能阻塞,等查到再继续跑,但是线程池的线程数量是有限的,一个线程阻塞了,要处理更多的请求怎么办?只能再开更多的线程,开更多的线程了,比CPU核数都多了,上下文切换就会更加厉害。最后只能在阻塞时间跟线程数量上做一个权衡。

但是用协程,遇到阻塞操作,就能把协程切走,去执行别的任务。这种协程的创建跟上下文切换,比线程的创建跟上下文切换要廉价很多。

上面说到的查数据库,本身会阻塞线程,除非自己用 st_read 实现一个数据库通信类,如果用操作系统的 read,本身是会阻塞。简单一点可以开另领一个线程专门处理数据库查询,然后业务线程与数据库线程通过 ST 的 fd 进行通信。例如业务线程用 pipe 创建两个fd,read fd 业务线程自己用,数据库线程查询到数据之后写入 write fd,那业务协程就会被激活。业务线程跟数据库线程之间通过管道fd通信。

代码如下:

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
int sig_pipe[2];
​
//线程执行的函数
void * sql_read(void *args) {int res;while (1){int data = 0;read(sig_pipe[0],&data,sizeof(data));printf("read success = %d\n", data);
​sleep(2);printf("sleep 2 \n");//最终将互斥锁解锁}
​return NULL;
}
//线程执行的函数
void * sql_send(void *args) {int res;int data = 5;write(sig_pipe[1],&data,sizeof(data));int data2 = 9;write(sig_pipe[1],&data2,sizeof(data2));
​sleep(10);return NULL;
}
int main() {pipe(sig_pipe);
​int res;pthread_t mythread1, mythread2;res = pthread_create(&mythread1, NULL, sql_read, NULL);if (res != 0) {printf("mythread1线程创建失败\n");return 0;}res = pthread_create(&mythread2, NULL, sql_send, NULL);if (res != 0) {printf("mythread2线程创建失败\n");return 0;}//等待 mythread1 线程执行完成res = pthread_join(mythread1, NULL);if (res != 0) {printf("1:等待线程失败\n");}//等待 mythread2 线程执行完成res = pthread_join(mythread2, NULL);if (res != 0) {printf("2:等待线程失败\n");}return 0;
}

与 state-thread 类似的 C/C++ 协程库有以下几个:

  1. libco ,腾讯出的。
  2. libgo,国人出的。
  3. acl ,功能很多的协程库。

杨成立 在 issue 里面放了几篇 st-thread 库的分析 文章

  1. 《state-threads代码分析》
  2. 《MSG_ZEROCOPY 在 st 上的应用》
  3. 《如何让 st 支持多线程》
  4. 《协程原理:函数调用过程、参数和寄存器》

由于笔者的水平有限, 加之编写的同时还要参与开发工作,文中难免会出现一些错误或者不准确的地方,恳请读者批评指正。如果读者有任何宝贵意见,可以加我微信 Loken1。QQ:2338195090。

这篇关于ST源码分析-前言的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088859

相关文章

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

python中os.stat().st_size、os.path.getsize()获取文件大小

《python中os.stat().st_size、os.path.getsize()获取文件大小》本文介绍了使用os.stat()和os.path.getsize()函数获取文件大小,文中通过示例代... 目录一、os.stat().st_size二、os.path.getsize()三、函数封装一、os

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专