OpenCV机器学习-人脸识别

2024-06-23 23:52

本文主要是介绍OpenCV机器学习-人脸识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 基本概念

1 计算机视觉与机器学习的关系

计算机视觉是机器学习的一种应用,而且是最有价的应用。

2 人脸识别

哈尔(haar)级联方法
Harr是专门为解决人脸识别而推出的;
在深度学习还不流行时,Harr已可以商用;
深度学习方法(DNN)

3 Haar人脸识别步骤

创建Haar级联器
导入图片并将其灰度化
调用detectMultiScale方法进行人脸识别

detectMultiScale

detectMultiScale(img,
double scaleFactor=1.1,
int minNeighbors=3,
...)
import cv2
import numpy as np# 第一步 创建Haar级联器
facer=cv2.CascadeClassifier('./haarcascades/haarcascade_frontalface_default.xml')# 第二步 导入人脸识别图片并将其灰度化
img=cv2.imread('p3.png')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 第三步 进行人脸识别
faces=facer.detectMultiScale(gray,1.1,5)for(x,y,w,h)in faces:cv2.rectangle(img,(x,y),(x+w,y+w),(0,0,255))cv2.imshow('img',img)
cv2.waitKey(0)

在这里插入图片描述

4 其他脸部特征的检测

import cv2
import numpy as np# 第一步 创建Haar级联器
facer=cv2.CascadeClassifier('./haarcascades/haarcascade_frontalface_default.xml')eye=cv2.CascadeClassifier('./haarcascades/haarcascade_eye.xml')# 第二步 导入人脸识别图片并将其灰度化
img=cv2.imread('p3.png')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 第三步 进行人脸识别
faces=facer.detectMultiScale(gray,1.1,5)
for(x,y,w,h)in faces:cv2.rectangle(img,(x,y),(x+w,y+w),(0,0,255),2)eyes = eye.detectMultiScale(gray, 1.1, 3)
for (x, y, w, h) in eyes:cv2.rectangle(img, (x, y), (x + w, y + w), (0, 0, 255),2)cv2.imshow('img',img)
cv2.waitKey(0)

import cv2
import numpy as np# 第一步 创建Haar级联器
facer=cv2.CascadeClassifier('./haarcascades/haarcascade_frontalface_default.xml')eye=cv2.CascadeClassifier('./haarcascades/haarcascade_eye.xml')mouth=cv2.CascadeClassifier('./haarcascades/haarcascade_mcs_mouth.xml')nose=cv2.CascadeClassifier('./haarcascades/haarcascade_mcs_nose.xml')# 第二步 导入人脸识别图片并将其灰度化
img=cv2.imread('p3.png')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 第三步 进行人脸识别#检测出的人脸再检测眼睛
faces=facer.detectMultiScale(gray,1.1,5)
i=0
for(x,y,w,h)in faces:cv2.rectangle(img,(x,y),(x+w,y+w),(0,0,255),2)roi_img=img[y:y+h,x:x+w]eyes = eye.detectMultiScale(roi_img, 1.1, 3)for (x, y, w, h) in eyes:cv2.rectangle(roi_img, (x, y), (x + w, y + w), (0, 0, 255),2)i=i+1winname='face'+str(i)cv2.imshow(winname,roi_img)#mouths = mouth.detectMultiScale(gray, 1.1, 3)
#for (x, y, w, h) in mouths:
#    cv2.rectangle(img, (x, y), (x + w, y + w), (255, 0, 0), 2)#noses = nose.detectMultiScale(gray, 1.1, 3)
#for (x, y, w, h) in noses:
#    cv2.rectangle(img, (x, y), (x + w, y + w), (255, 255, 0), 2)cv2.imshow('img',img)
cv2.waitKey(0)

二 车牌识别的具体步骤

通过Haar定位车牌的大体位置;
对车牌进行预处理;
调用tesseract进行文字识别;

1 车牌预处理包括的内容

对车牌进行二值化处理;
进行形态学处理;
滤波去噪点;
缩放;

2 Tesseract的安装

brew install tesseract tesseract-lang
pip3 install pytesseract
import cv2
import numpy as npimport pytesseractplate=cv2.CascadeClassifier('./haarcascades/haarcascade_russian_plate_number.xml')
img=cv2.imread('./chinacar.jpeg')gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)plates=plate.detectMultiScale(gray,1.1,3)for(x,y,w,h) in plates:cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)#对获取到车牌进行预处理
#1.提取ROI
roi=gray[y:y+h,x:x+w]
#进行二值化
ret,roi_bin=cv2.threshold(roi,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)print(pytesseract.image_to_string(roi,lang='chi_sim+eng',config='--psm 8 --oem 3'))cv2.imshow('roi_bin',roi_bin)
cv2.imshow('img', img)
cv2.waitKey()

三 深度学习

1 DNN

在这里插入图片描述

2 RNN

在这里插入图片描述

3 RNN主要用途

语音识别
机器翻译
生产图像描述

4 CNN

在这里插入图片描述

5 CNN主要用途

图片分类、检索
目标定位检测
目标分割
人脸识别

四 DNN实现图像分类

1 DNN 使用步骤

读取模型,并得到深度神经网络;
读取图片/视频;
将图片转成张量,送入深度神经网络;
进行分析得到结果

2 导入模型

readNetFromTensorflow
readNetFromCaffe
readnetDarknet,YOLO
readNet

3 导入模型API参数

readNetFromTensorFlow(model,config)
readNetFromCaffe/Darknet(config,model)
readNet(model,[config,[framework]])

4 blobFromImage函数

将图像转成张量

blobFromImage(image,
scalefactor=1.0,
size=Size(),
mean=Scalar(),
swapRB=false,
swapRB=false,
crop=false...) 

mean的含义
在这里插入图片描述

5 将张量送入网络并执行

net.setInput(blob)
net.forward()
import cv2
from cv2 import dnn
import numpy as np#导入模型,创建神经网络
config="./model/bvlc_googlenet.protoxt"
model="./model/bvlc_googlenet.caffemodel"
net=dnn.readNetFromCaffe(config,model)
#读图片,转成张量
img=cv2.imread('./smallcat.jpeg')
blob=dnn.blobFromImage(img,1.0(224,224),(104,117,123))
#将张量输入到网络中,并进行预测
net.setInput(blob)
r=net.forward()#读net.forwar()#读取类目
classes=[]
path='./model/synset_words.txt'
with open(path,'rt') as f:classes =[x[x.find(" ")+1:]for x in f]
order=sorted(r[0],reverse=True)z=list(range(3))
for i in range(0,3):z[i]=np.where(r[0]==order[i])[0][0]print('第',i+1, '项,匹配:',classes[z[i]],end='')print('类所在行:',z[i]+1,' ','可能性:',order[i])#得到结果,显示

这篇关于OpenCV机器学习-人脸识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088641

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个