编程精粹—— Microsoft 编写优质无错 C 程序秘诀 07:编码中的假象

本文主要是介绍编程精粹—— Microsoft 编写优质无错 C 程序秘诀 07:编码中的假象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是一本老书,作者 Steve Maguire 在微软工作期间写了这本书,英文版于 1993 年发布。2013 年推出了 20 周年纪念第二版。我们看到的标题是中译版名字,英文版的名字是《Writing Clean Code ─── Microsoft’s Techniques for Developing》,这本书主要讨论如何编写健壮、高质量的代码。作者在书中分享了许多实际编程的技巧和经验,旨在帮助开发人员避免常见的编程错误,提高代码的可靠性和可维护性。


不记录,等于没读。本文记录书中第七章内容:编码中的假象。


有些编程实践非常危险,永远不应使用。它们中的大多数明显具有风险,但也有些看似相当安全,甚至令人向往,因为它们满足需求而没有明显的危险。这些危险的编码实践其实是披着羊皮的狼。为什么不应该引用刚刚释放的内存?为什么在全局或静态存储中传递数据是有风险的?为什么应该避免寄生函数?为什么依赖 ANSI 标准中列出的每一个细枝末节是不明智的?

这里先解释 寄生函数。在编程领域,“parasitic functions”(寄生函数)通常指那些依赖外部状态或副作用而工作的函数。这些函数不具备独立性,因为它们的行为依赖于外部环境,而不是纯粹的输入参数。这样的函数往往难以预测、测试和维护。以下是寄生函数的一些典型特征:

  • 依赖全局变量:函数依赖于全局变量的状态,这使得它们在不同的上下文中表现不一致。
  • 修改外部状态:函数在运行时改变了外部变量或状态,而不仅仅是返回一个结果。
  • 副作用:函数除了返回值外,还对程序的其他部分产生影响,如打印输出、修改文件等。
  • 依赖环境:函数的行为依赖于外部环境或系统状态,如系统时间、配置文件等。

寄生函数的存在会增加代码的复杂性和错误率,因为它们不遵循“单一职责原则”(SRP)和“函数纯度”(pure function)的理念。为了提高代码的可维护性和可靠性,编程时应尽量避免使用寄生函数,而应设计独立、可预测和易于测试的函数。

注意到底引用了什么

memchr 函数的作用是在内存块中查找第一次出现的特定字符。如果在内存块中找到了该字符,则返回指向该字符的指针,否则,返回 NULL 。一个正确的实现代码如下所示:

void *memchr(void *pv, unsigned char ch, size_t size) {unsigned char *pch = (unsigned char *)pv;while(size-- > 0){if(*pch == ch)return(pch);pch++;}return(NULL);
}

如果有程序员想要追求更快的速度,那么他可以使用一些奇技淫巧来去除范围检查:只要在内存块之后的第一个位置存放 ch 字符,这样总是可以找到 ch 字符。只要能保证总是可以找打指定字符,那么就可以不用检查内存范围(这个内存范围内一定有待查字符)。或许你会有疑问,在内存块之后放置一个字符,不是破坏其它内存数据了吗?是的,但是有办法补救,我们会先将这个位置数据存储下来,在函数返回前,再将数据放回原位置,堪称完美。代码如下:

void *memchr(void *pv, unsigned char ch, size_t size) {unsigned char *pch = (unsigned char *)pv;unsigned char *pchPlant;unsigned char chSave;			pchPlant = pch + size;	//pchPlant 指向要被查寻的内存块后面的第一个字节chSave = *pchPlant;		//保存这个区域的数据*pchPlant = ch;			//设置数据位 ch ,确保函数一定能找到 chwhile(*pch != ch)pch++;*pchPlant = chSave;		//恢复数据return((pch == pchPlant)? NULL : pch);
}

巧妙吗?通过保证 memchr 总能找到 ch,这样就可以删除范围检查,使循环速度加倍。但是这样可靠吗?

并不可靠。这少有以下问题:

  • 如果 pv 指向的是只读存储器,那么在 pchPlant 处存放字符 ch 就不起作用。
  • 如果 pchPlant 指向映射到 I/O 的存储器,那么向该位置写操作的后果就不可预测。
  • 如果待查找的内存块恰好位于合法内存的最后位置,那么 pchPlant 指向非法区域,向这个位置写操作会引起存储故障,可能会终止整个程序。
  • 如果 pchPlant 指向并发进程共享的数据区域,则可能造成其它进程数据错误。

不要引用不属于你自己的存储空间

再看一个有些微妙的错误的例子:释放链表的子窗口。代码简化如下:

void FreeWindowsTree(windows *pwndRoot) {if(pwndRoot != NULL) {window *pwnd;for(pwnd = pwndRoot->pwndChild; pwnd != NULL; pwnd = pwnd->pwndSibling)FreeWindowTree(pwnd);	//释放子窗口...}
}

让我们看一下 for 循环体,它按照以下步骤执行:

  1. 初始化 pwnd :pwnd = pwndRoot->pwndChild;
  2. 判断条件: pwnd 是否为 NULL 。如果是,执行步骤 3;否则循环结束。
  3. 执行函数 FreeWindowTree(pwnd) :释放 pwnd 指向的存储块。
  4. 更新 pwnd :pwnd = pwnd->pwndSibling,然后执行步骤 2。

问题出现在步骤 4 上。更新 pwnd 时,表达式 pwnd->pwndSibling 引用了已经释放的内存数据。有些程序员并不认为这样有什么问题,刚刚存储区还好好的,也没做什么影响它的事,而且在机器上运行这个程序,并有任何的异常。

关键的是,一旦释放 pwnd 指向的内存块,那么 pwnd->pwndSibling 的值是什么呢?是一堆垃圾。引用已经释放的存储区是非法的,在释放过程中,存储管理程序可能以任何方式使用这些内存,而你并不能控制存储管理程序,因为它是操作系统提供的。如果上述程序能正常运行,也只是凑巧而已。

仅取所需

编写一个无符号数转字符串的函数,一般步骤是:

  1. 获取数字的个位数,转换成字符
  2. 将数字缩小 10 倍
  3. 判断数字是否大于 0 ,如果是,执行步骤1,否则转换完成。

唯一的问题是,这样转换出来的字符串是倒置的,比如数字 123,通过上述算法得到的字符串是 “321”。所以,为了获取正确的顺序,转换结束后要进行字符串反转操作。有些程序员觉得这样做效率低下,他们给出了新的算法,反向生成字符串,以便正确表示数字,代码如下:

char *UnsToStr(unsigned u, char *str)  { char *pch; ASSERT(u <= 65536); pch = &str[5]; 		//这里假设 str 指向的内存足够大,能存储 u 的最大值*pch = '\0'; do *--pch = u % 10 + '0'; while((u /= 10) > 0); return pch; 
}

这个函数的问题是,str 指向的存储区有多大,你并不知道。但是,函数却假设它足够大。调用者并不一定知道这个函数基于的假设。比如调用者确定自己的数据在 0-255 以内,就可能只申请 4 个字节的内存空间:

char strScore[4]; 
UnsToStr(UserScore, strScore); 	

这样 UnsToStr 函数会破坏 strScore 数组后面的内存数据。一个编程经验是:尽一切可能避免依赖。你的每一个依赖都可能是将来问题的原因。

不要在全局或静态存储中传递数据

还是以编写一个无符号数转字符串的函数为例。在上一节中,我们说不能假设 str 指向的存储区足够大。所以这次,我们在函数内部定义一个足够大的静态数组:

char *strFromUns(unsigned u) {static char strDigits[] = "?????" ; 	//5个字符 + '\0'char *pch;ASSERT(u <= 65535);pch = &strDigits[5];ASSERT(*pch == '\0');do*--pch = u % 10 + '0' ;while((u /= 10) > 0);return(pch);
}

一旦使用全局或静态存储区传递数据,就意味着这个函数不具备可重入性。比如连续将两个无符号数转换成在字符串:

strHighScore = strFromUns(HighScore);
strThisScore = strFromUns(Score);

第二次调用会将第一次转换的结果覆盖掉!

一些观点

  • 任何时候,只要不编写直观代码,就是自找麻烦!

  • 用一把螺丝刀撬开油漆罐的盖子,然后又用这把螺丝刀搅拌油漆,这是家庭维护中最熟悉的举动之一。人们知道这样做会损坏螺丝刀,不应该如此,为什么还要用螺丝刀来搅拌油漆呢?原因在于,这样做在当时很方便,而且能够解决问题。

  • 使用过某个工具后,你有把它物归原位的习惯吗?据我观察,基本上没有人这么做。所以等到再次用到这个工具的时候,他们会费时间到处找。为什么不放回原位呢,因为用完一扔最方便。
    我很警惕那些怎么方便就怎么来的人。他们常常会以牺牲他人的方式方便自己。

  • 在 Microsoft,那些理解产品内部工作原理的人,会更多的编写新代码。对项目了解很少的人则把时间花在阅读别人的代码、修改别人的BUG以及对已有功能做少量的局部性增补。这种安排很有意义。如果你不理解系统,就不能给系统增加主要功能。

  • 如果你发现自己编写的代码用了较多技巧,那么停止编写代码并寻找别的解决方法。如果一个算法不直观,却产生了正确的结果,那么这个算法的错误同样也会不明显。因此,编写直观代码才是真正的聪明人。

小结

  • 如果你在处理不属于你的数据,哪怕是临时的,也不要写入它。虽然你可能认为读取数据总是安全的,但请记住,读取内存映射的 I/O 可能会对硬件造成危害。
  • 一旦释放了内存,不要再引用它。引用已释放的内存会导致许多种错误。
  • 为了效率,你可能会想在全局或静态缓冲区中传递数据,但这是一个充满危险的捷径。如果你编写了一个函数,它所创建的数据只对调用者有用,请将数据返回给调用者,或者保证你不会意外地更改这些数据。
  • 不要编写依赖于其他函数具体实现的函数。
  • 编程时,按照程序设计语言原来的本意,编写清晰、准确的代码。避免使用可疑的编程习惯,即使语言标准保证它们能工作。记住,标准是会改变的。
  • 从逻辑上看,用 C 语言高效地表达一个概念似乎也会生成同样高效的机器代码,但事实并非如此。在将一段清晰的多行 C 代码压缩成单行代码之前,请确保你因此得到了更好的机器代码。即便如此,请记住局部效率的提升通常难以察觉,而且通常不值得破坏代码的可读性。
  • 最后,不要像律师写合同那样编写代码。如果一个普通程序员不能阅读和理解你的代码,那它就太复杂了;请使用更简单的语言。






每一份打赏,都是对创作者劳动的肯定与回报。
千金难买知识,但可以买好多奶粉

这篇关于编程精粹—— Microsoft 编写优质无错 C 程序秘诀 07:编码中的假象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088577

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

EMLOG程序单页友链和标签增加美化

单页友联效果图: 标签页面效果图: 源码介绍 EMLOG单页友情链接和TAG标签,友链单页文件代码main{width: 58%;是设置宽度 自己把设置成与您的网站宽度一样,如果自适应就填写100%,TAG文件不用修改 安装方法:把Links.php和tag.php上传到网站根目录即可,访问 域名/Links.php、域名/tag.php 所有模板适用,代码就不粘贴出来,已经打

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &

如何编写Linux PCIe设备驱动器 之二

如何编写Linux PCIe设备驱动器 之二 功能(capability)集功能(capability)APIs通过pci_bus_read_config完成功能存取功能APIs参数pos常量值PCI功能结构 PCI功能IDMSI功能电源功率管理功能 功能(capability)集 功能(capability)APIs int pcie_capability_read_wo