提升方法AdaBoost你真的懂吗

2024-06-23 21:48

本文主要是介绍提升方法AdaBoost你真的懂吗,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

路边的茶楼 人影错落
街上传来 两三声吆喝
人前摇扇 醒木拍桌
各位看官 你细听分说
                                                                                                                                《说书人》

1. 简介

提升(boosting)方法是一种常用的统计学习方法。其代表性的提升算法就是AdaBoost(Adaptive Boosting 自适应增强的缩写),AdaBoost算法是1995年由Yoav Freund和Robert Schapire提出。

2. 基本思路

AdaBoost基于思想:针对一复杂任务,综合多个专家判断得出的结论,好过其中任何一个专家的结论,类似“三个臭皮匠赛过诸葛亮”。
对于一个具体的分类问题,在给定训练样本情况下,求出一个弱分类器要比求出一个强分类器容易得太多。提升方法就是基于这一点,不要一口吃个胖子,你说你强分类器难得,我还就不要了,它从弱分类器出发,反复学习,得到一系列弱分类器,将这些弱分类器线性组合,从而构成强分类器。
没错,它就是这种我能力不咋滴(单个分类器是弱),但是我不怕苦(多学几轮),多个微不足道(多个弱分类器),足够让我美出天际(效果好)。是不是觉得AdaBoost有点酷!

3. 相关问题

针对AdaBoost,看完理论概念之后,可能存在很多疑问,下面说一下:

1、AdaBoost个体弱学习器 G k ( x ) G_k(x) Gk(x)之间是否存在强依赖关系?

答:是。AdaBoost前一轮习得的学习器,直接影响下一个弱学习器,主要是通过误差影响影响下一轮训练样本的权值,进而影响下一个学习器(下一节会具体说)。

2、是不是下一个弱分类器 G k + 1 ( x ) G_{k+1}(x) Gk+1(x)的准确率要比前一个 G k ( x ) G_{k}(x) Gk(x)高?

答:不是。之前对这一点有很深的误解,导致整体垮掉,这个坎过去之后,世界豁然开朗。AdaBoost一系列弱学习器的生成,并不是后一个比前一个更准确,而是基于本次“样本权重”的训练数据,使得本次误差最小,记住并不是整体准确性更高!怎么理解这句话呢?前一轮弱学习器习得的正确的结果在下一轮中,样本权值减小,加大错误样本的权值,也就是下一个弱学习器只是更眷顾上一轮分错的样本,并不意味着,要把上一轮分正确的样本分正确了!而样本的权值直接影响样本误差的计算,极端的情况下,我下一个弱分类器把前一轮分错的样本全分正确,即使上一轮分正确的样本在下一个分类器上全分错了,计算最终的误差也可能很小。

3、训练数据 T T T是否是同一批?

答:是也不是。
说是,是因为训练的一系列弱分类器终究都来源于最初的那一批训练数据 T T T
说不是,是因为,后一个训练弱分类器的数据来源于前一个弱分类器经过权值调整后的数据,即会提高前一轮弱分类器错误分类样本的权值,降低那些被正确分类样本的权值(错误分类的那些样本更值得关注),这个样本的权值直接影响误差的计算!!!(下一节会具体说)

4、样本权值 w w w需要初始化,是否随机?

答:需要初始化,不随机。最开始样本权值需要一视同仁,因此,所有样本等权值( 1 N \frac{1}{N} N1)。

5、怎样确认学习器 G k ( x ) G_{k}(x) Gk(x)的权重 α k \alpha_{k} αk

答:最简单的就是通过学习器 G k ( x ) G_k(x) Gk(x)的误差 e k e_k ek,我们的目的是加大小误差学习器的权重,这样我们可以构造误差 e k e_k ek的反函数来确认学习器 G k ( x ) G_k(x) Gk(x)的权重 α k \alpha_{k} αk。(下一节会具体说)

6、怎样确认下一个学习器 G k + 1 ( x ) G_{k+1}(x) Gk+1(x)所需样本的权值 w k + 1 w_{k+1} wk+1

答:加大上一个学习器 G k ( x ) G_{k}(x) Gk(x)分错样本的权值 w k w_{k} wk,降低分类正确的权值。因此,可以通过上一个学习器的误差来调整样本权值,又因学习器的权重 α k \alpha_{k} αk是误差 e k e_{k} ek的反函数,因此,就可以用上一轮学习器的权重 α k \alpha_{k} αk的反函数来调整下一轮学习器训练样本权值 w k + 1 w_{k+1} wk+1。记住喽:权重是用来计算误差的,为了降低误差,选择阈值时会倾向把权重大的分类正确。(下一节会具体说)

7、弱分类器如何组合成为强分类器?

答:AdaBoost采取加权多数表决的方法。加大那些分类正确的分类器权值,减小误分类大的权值,弱分类器之中优秀的重要性高一些。

4. 算法推导过程

假设给定一二分类训练集:

T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x m , y m ) } T=\{(x_1,y_1),(x_2,y_2), \dots,(x_m,y_m)\} T={(x1,y1),(x2,y2),,(xm,ym)}

其中,标记 y i ∈ { − 1 , 1 } y_{i}\in\{-1,1\} yi{1,1} m m m为样本的数量。
(1)训练样本的权值分布:

D ( k ) = ( w k 1 , w k 2 , . . . w k m ) D(k) = (w_{k1}, w_{k2}, ...w_{km}) D(k)=(wk1,wk2,...wkm)

其中 k k k为训练分类器的第 k k k轮,初始化权值 D ( 1 ) = ( 1 m , 1 m , … , 1 m ) ⏞ m 个 样 本 D(1) = \overbrace{(\frac{1}{m}, \frac{1}{m}, \dots,\frac{1}{m}) }^{m个样本} D(1)=(m1,m1,,m1) m
(2)第 k k k个弱分类器 G k ( x ) G_{k}(x) Gk(x)在训练样本 T T T上的加权误差率(错误率) e k e_k ek

e k = P ( G k ( x i ) ≠ y i ) = ∑ i = 1 m w k i I ( G k ( x i ) ≠ y i ) e_k = P(G_k(x_i) \neq y_i)\qquad\qquad \\= \sum\limits_{i=1}^{m}w_{ki}I(G_k(x_i) \neq y_i) ek=P(Gk(xi)=yi)=i=1mwkiI(Gk(xi)=yi)
这里需要多解释一下,用训练的弱分类器 G k ( x ) G_{k}(x) Gk(x)去评估训练结果 e k e_k ek(错误率),当 G k ( x i ) ≠ y i G_k(x_i) \neq y_i Gk(xi)=yi时,记录下来,并将这些用分类器 G k ( x ) G_k(x) Gk(x)分类错误的样本的权值 w k i w_{ki} wki相加。特别地,当 k = 1 k=1 k=1时,分类器 G 1 ( x ) G_1(x) G1(x)分类错误率 = 分 错 误 样 本 数 样 本 总 数 m =\frac{分错误样本数}{样本总数m} =m;当 k > 1 k>1 k>1时,分类器 G k ( x ) G_k(x) Gk(x)分类错误率 ≠ 分 错 误 样 本 数 样 本 总 数 m \neq\frac{分错误样本数}{样本总数m} =m,此时,因为样本权值不一样,所以计算错误率不能按错误样本比例计算。这里也说明一下,第 k k k个分类器从 x x x的哪里进行切分,评判标准就是,”加权“之后样本的错误率最低。
(3)接下来需要计算弱分类器 G k ( x ) G_{k}(x) Gk(x)的权重:

α k = 1 2 l o g 1 − e k e k \alpha_k = \frac{1}{2}log\frac{1-e_k}{e_k} αk=21logek1ek

这里的对数时自然对数。这里需要解释一下,弱分类器在一系列分类器中的地位如何?主要跟分类器的加权之后样本的错误率有关,降低错误率较大分类器的权重,提升错误率低的分类器权重。即分类器 G k ( x ) G_{k}(x) Gk(x)的权重 α k \alpha_k αk是加权样本错误率 e k e_{k} ek的反函数,因此,构造的上述 α k \alpha_k αk是合理的,同时可以发现只有当 e k < 1 2 e_{k}<\frac{1}{2} ek<21时, α k > 0 \alpha_{k}>0 αk>0,这样的学习器才是有意义。

(4)更新训练样本的权值分布:

D ( k + 1 ) = ( w k + 1 , 1 , w k + 1 , 2 , . . . w k + 1 , m ) D(k+1) = (w_{k+1,1}, w_{k+1,2}, ...w_{k+1,m}) D(k+1)=(wk+1,1,wk+1,2,...wk+1,m)

w k + 1 , i = w k i Z k e x p ( − α k y i G k ( x i ) ) w_{k+1,i} = \frac{w_{ki}}{Z_k}exp(-\alpha_ky_iG_k(x_i)) wk+1,i=Zkwkiexp(αkyiGk(xi))

其中, Z k Z_k Zk为规范化因子,

Z k = ∑ i = 1 m w k i e x p ( − α k y i G k ( x i ) ) Z_k = \sum\limits_{i=1}^{m}w_{ki}exp(-\alpha_ky_iG_k(x_i)) Zk=i=1mwkiexp(αkyiGk(xi))

这里需要解释一下,规范化因子的目的,主要为了保证第 k + 1 k+1 k+1轮训练样本的权值之和为1。加大本轮学习器 G k ( x ) G_{k}(x) Gk(x)分错样本的权值 w k w_{k} wk,降低分类正确的权值。因此,可以通过上一个学习器的误差率(加权错误率)来调整样本权值,又因学习器的权重 α k \alpha_{k} αk是误差 e k e_{k} ek的反函数,因此,就可以用本轮学习器的权重 α k \alpha_{k} αk的反函数来调整下一轮学习器训练样本权值 w k + 1 w_{k+1} wk+1。由公式可看出,通过指数损失函数 e x p ( x ) exp(x) exp(x)调整权重,当分类正确时,权重 w w w会降低, y i y_i yi G k ( x i ) G_k(x_i) Gk(xi)同号( y i G k ( x i ) > 0 y_iG_k(x_i)>0 yiGk(xi)>0),分类错误的增加权重 w w w。因此,构造上述的权值更新公式是合理的。记住喽:权重是用来计算误差的,为了降低误差,选择阈值时会倾向把权重大的分类正确。

(5)最终的强分类器:

f ( x ) = s i g n ( ∑ k = 1 K α k G k ( x ) ) f(x) = sign(\sum\limits_{k=1}^{K}\alpha_kG_k(x)) f(x)=sign(k=1KαkGk(x))

其中, K K K是弱分类器的总数。
至此,已经推导出了,AdaBoost的二分类。

这篇关于提升方法AdaBoost你真的懂吗的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088365

相关文章

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复