「Debug R」明明我用的是数据框,为啥运行结果有点不对劲

2024-06-23 20:38

本文主要是介绍「Debug R」明明我用的是数据框,为啥运行结果有点不对劲,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在「Debug R」有些你认为的报错不是报错(error),是警告(warnnings)里,我解决了一个使用者在 tibble 数据结构赋予行名出现的问题。

这次问题和上次类似,也是没有注意到自己用的数据结构其实不是普通的数据框了,只不过这次的问题的主角是 data.table

果子老师很喜欢用data.table的一个函数---fread, 它的读取速度非常快,而且使用非常方便,基本不怎么需要加参数,唯独有个问题要特别注意下,就是它的数据结构不是普通的数据框 data.frame,还是一个data.table

> library(data.table)
> write.csv(mtcars, "mtcars.csv")
> df <- fread("mtcars.csv")
> class(df)
[1] "data.table" "data.frame"

在大部分情况下,它和普通的数据框的表现的差不多,也可以有行名,但是用headtail是看不出来,必须要用rownames才行

> rownames(df)[1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12" "13" "14" "15" "16" "17"
[18] "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32"
> rownames(df) <- paste0("Id", rownames(df))
> head(df)V1  mpg cyl disp  hp drat    wt  qsec vs am gear carb
1:         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
2:     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
3:        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
4:    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
5: Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
6:           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
> rownames(df)[1] "Id1"  "Id2"  "Id3"  "Id4"  "Id5"  "Id6"  "Id7"  "Id8"  "Id9"  "Id10" "Id11" "Id12"
[13] "Id13" "Id14" "Id15" "Id16" "Id17" "Id18" "Id19" "Id20" "Id21" "Id22" "Id23" "Id24"
[25] "Id25" "Id26" "Id27" "Id28" "Id29" "Id30" "Id31" "Id32"

而且在选取列的时候,也看起来没啥毛病

> df[1:2, c("V1","mpg")]V1 mpg
1:     Mazda RX4  21
2: Mazda RX4 Wag  21

一切看起来都挺美好的,直到你做了下面这个操作

>  df[, colnames(df)][1] "V1"   "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear" "carb"

为啥结果不是输出所有列呢,咋和mtcars[,colnames(mtcars)]结果居然不一样。

当然不一样了,因为data.table也有自己的一套数据处理思想,对于DT[i,j]而言,j表示的如何对列运算或直接筛选,如下,详见http://r-datatable.com,

# select|compute columns
DT[, v]                                     # v column (as vector)
DT[, list(v)]                               # v column (as data.table)
DT[, .(v)]                                  # same; .() is an alias for list()
DT[, sum(v)]                                # sum of column v, returned as vector
DT[, .(sum(v))]                             # same but return data.table
DT[, .(sv=sum(v))]                          # same but name column "sv"
DT[, .(v, v*2)]                             # return two column data.table
# select columns the data.frame way
DT[, 2]                                     # 2nd column, a data.table always
colNum = 2                                  
DT[, ..colNum]                              # same as DT[,2]; ..var => one-up
DT[["v"]]                                   # same as DT[,v] but lower overhead

也就是说,在 data.table里,df[, colnames(df)]的含义其实就是获取列名而已,而不是简单的先得到列名,然后根据列名选取列。

如果你要通过变量名选择列的话,你的代码要换种方式写

> rn <- colnames(df)
> df[, ..rn]

如果已经是data.table类,那么解决方法就是,要么用as.data.frame 把数据结构进行转换,要们就花点时间学习data.table的数据处理体系, 见<r-datatable.com>

但是对于之后想用datat.table::fread读取数据,那么参考评论区Tanyongjun的策略,设置data.table=F就会输出data.frame,比用as.data.frame要快。特别是数据较大的时候。

这篇关于「Debug R」明明我用的是数据框,为啥运行结果有点不对劲的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088222

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt