WGDI之深入理解blockinfo输出结果

2024-06-23 19:48

本文主要是介绍WGDI之深入理解blockinfo输出结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

blockinfo模块输出文件以csv格式进行存放,共23列,可以用EXCEL直接打开。

block info

其中16列非常容易裂解,描述如下

  1. id 即共线性的结果的唯一标识

  2. chr1,start1,end1 即参考基因组(点图的左边)的共线性范围(对应GFF1的位置)

  3. chr2,start2,end2 即参考基因组(点图的上边)的共线性范围(对应GFF2的位置)

  4. pvalue 即共线性结果评估,常常认为小于0.01的更合理些

  5. length 即共线性片段中基因对数目

  6. ks_median 即共线性片段上所有基因对ks的中位数(主要用来评判ks分布的)

  7. ks_average 即共线性片段上所有基因对ks的平均值

  8. block1,block2分别为共线性片段上基因order的位置。

  9. ks共线性片段上所有基因对的ks

  10. density1,density2 共线性片段的基因分布密集程度。值越小表示稀疏。

最后两列,class1class2会在 alignment 模块中用到,对应的是两个block分组,默认值是0表示两个block是同一组。这两列后期需要自己根据覆盖率,染色体核型等多个方面进行确定。举个例子,我们可以根据 homo1 的取值范围对class1进行赋值,例如-1~-0.5 是 1,-0.5 ~ 0.5 是2,0.5~1是3,最后在alignment中会就会用三种颜色来展示,例如下图的1,2,3分别对应red,blue,green.

alignment

中间的homo1,homo2,homo3,homo4,homo5并非那么直观,先说结论:

  • 这里的homoN(N=1,2,3,4,5) 表示一个基因有N个最佳匹配时的取值

  • N由mutiple参数确定,对应点阵图(dotplot)中的红点

  • multiple的取值一般取1即可,表示最近一次的WGD可能是一次二倍化事件,因此每个基因只会有一个最佳匹配。如果设置为2,可能是一次3倍化,每个基因由两个最佳匹配。当然实际情况可能会更加复杂,比如说异源四倍体,或者异源六倍体,或者没有多倍化只是小规模的基因复制(small-scale gene duplication) 等情况,也会影响multiple的设置。

  • homoN会在后面过滤共线性区块时用到,一般最近的WGD事件所产生的共线性区块会比较接近1,而古老的WGD产生的共线性区块则接近-1.

接着,我们将根据源代码 blast_homo和blast_position 来说明结算过程。

首先需要用到blast_homo函数,用来输出每个基因对在不同最佳匹配情况下的取值(-1,0,1)。

def blast_homo(self, blast, gff1, gff2, repeat_number):index = [group.sort_values(by=11, ascending=False)[:repeat_number].index.tolist()for name, group in blast.groupby([0])]blast = blast.loc[np.concatenate(np.array([k[:repeat_number] for k in index], dtype=object)), [0, 1]]blast = blast.assign(homo1=np.nan, homo2=np.nan,homo3=np.nan, homo4=np.nan, homo5=np.nan)for i in range(1, 6):bluenum = i+5redindex = np.concatenate(np.array([k[:i] for k in index], dtype=object))blueindex = np.concatenate(np.array([k[i:bluenum] for k in index], dtype=object))grayindex = np.concatenate(np.array([k[bluenum:repeat_number] for k in index], dtype=object))blast.loc[redindex, 'homo'+str(i)] = 1blast.loc[blueindex, 'homo'+str(i)] = 0blast.loc[grayindex, 'homo'+str(i)] = -1return blast

for循环前的代码作用是提取每个基因BLAST后的前N个最佳结果。循环的作用基因对进行赋值,主要规则是基因对如果在点图中为红色,赋值为1,蓝色赋值为0,灰色赋值为-1。

  • homo1 对应 redindex = 0:1, bluenum = 1:6, grayindex = 6:repeat_number

  • homo2 对应redindex = 0:2, bluenum = 2:7, grayindex = 7:repeat_number

  • ...

  • homo5对应redindex=0:5, bluenum=5:10, grayindex = 10:repeat_number

最终函数返回的就是每个基因对,在不同最佳匹配数下的赋值结果。

0          1  homo1  homo2  homo3  homo4  homo5
185893  AT1G01010  AT4G01550    1.0    1.0    1.0    1.0    1.0
185894  AT1G01010  AT1G02230    0.0    1.0    1.0    1.0    1.0
185899  AT1G01010  AT4G35580   -1.0    0.0    0.0    0.0    0.0
185900  AT1G01010  AT1G33060   -1.0   -1.0    0.0    0.0    0.0
185901  AT1G01010  AT3G49530   -1.0   -1.0   -1.0    0.0    0.0
185902  AT1G01010  AT5G24590   -1.0   -1.0   -1.0   -1.0    0.0
250822  AT1G01030  AT1G13260    0.0    0.0    0.0    1.0    1.0
250823  AT1G01030  AT1G68840    0.0    0.0    0.0    0.0    1.0
250825  AT1G01030  AT1G25560    0.0    0.0    0.0    0.0    0.0
250826  AT1G01030  AT3G25730   -1.0    0.0    0.0    0.0    0.0
250824  AT1G01030  AT5G06250   -1.0   -1.0    0.0    0.0    0.0

然后block_position函数, 会用 for k in block[1]的循环提取每个共线性区块中每个基因对的homo值,然后用 df = pd.DataFrame(blk_homo)homo = df.mean().values求均值。

def block_position(self, collinearity, blast, gff1, gff2, ks):data = []for block in collinearity:blk_homo, blk_ks = [],  []if block[1][0][0] not in gff1.index or block[1][0][2] not in gff2.index:continuechr1, chr2 = gff1.loc[block[1][0][0],'chr'], gff2.loc[block[1][0][2], 'chr']array1, array2 = [float(i[1]) for i in block[1]], [float(i[3]) for i in block[1]]start1, end1 = array1[0], array1[-1]start2, end2 = array2[0], array2[-1]block1, block2 = [], []## 提取block中对应基因对的homo值for k in block[1]:block1.append(int(float(k[1])))block2.append(int(float(k[3])))if k[0]+","+k[2] in ks.index:pair_ks = ks[str(k[0])+","+str(k[2])]blk_ks.append(pair_ks)elif k[2]+","+k[0] in ks.index:pair_ks = ks[str(k[2])+","+str(k[0])]blk_ks.append(pair_ks)else:blk_ks.append(-1)if k[0]+","+k[2] not in blast.index:continueblk_homo.append(blast.loc[k[0]+","+k[2], ['homo'+str(i) for i in range(1, 6)]].values.tolist())ks_arr = [k for k in blk_ks if k >= 0]if len(ks_arr) == 0:ks_median = -1ks_average = -1else:arr_ks = [k for k in blk_ks if k >= 0]ks_median = base.get_median(arr_ks)ks_average = sum(arr_ks)/len(arr_ks)# 对5列homo值求均值    df = pd.DataFrame(blk_homo)homo = df.mean().valuesif len(homo) == 0:homo = [-1, -1, -1, -1, -1]blkks = '_'.join([str(k) for k in blk_ks])block1 = '_'.join([str(k) for k in block1])block2 = '_'.join([str(k) for k in block2])data.append([block[0], chr1, chr2, start1, end1, start2, end2, block[2], len(block[1]), ks_median, ks_average, homo[0], homo[1], homo[2], homo[3], homo[4], block1, block2, blkks])data = pd.DataFrame(data, columns=['id', 'chr1', 'chr2', 'start1', 'end1', 'start2', 'end2','pvalue', 'length', 'ks_median', 'ks_average', 'homo1', 'homo2', 'homo3','homo4', 'homo5', 'block1', 'block2', 'ks'])data['density1'] = data['length'] / \((data['end1']-data['start1']).abs()+1)data['density2'] = data['length'] / \((data['end2']-data['start2']).abs()+1)return data

最终得到的homo1的homo5,是不同最佳匹配基因数下计算的值。如果共线性的点大部分为红色,那么该值接近于1;如果共线性的点大部分为蓝色,那么该值接近于0;如果共线性的点大部分为灰色,那么该值接近于-1。也就是我们可以根据最初的点图中的颜色来确定将来筛选不同WGD事件所产生共线性区块。

这也就是为什么homoN可以作为共线性片段的筛选标准。

这篇关于WGDI之深入理解blockinfo输出结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088111

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

java -jar example.jar 产生的日志输出到指定文件的方法

《java-jarexample.jar产生的日志输出到指定文件的方法》这篇文章给大家介绍java-jarexample.jar产生的日志输出到指定文件的方法,本文给大家介绍的非常详细,对大家的... 目录怎么让 Java -jar example.jar 产生的日志输出到指定文件一、方法1:使用重定向1、

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语