AtCoder Beginner Contest 359 A~C(D~F更新中...)

2024-06-23 19:20

本文主要是介绍AtCoder Beginner Contest 359 A~C(D~F更新中...),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A.Count Takahashi

题意

给出 N N N个字符串,每个字符串为以下两种字符串之一:

  • "Takahashi"

  • "Aoki"

请你统计"Takahashi"出现了多少次。

分析

输入并统计即可。

代码

#include <bits/stdc++.h>using namespace std;
typedef long long ll;void solve() {int n;cin >> n;int ans = 0;for (int i = 0; i < n; i++) {string s;cin >> s;if (s[0] == 'T') ans++;}cout << ans << endl;
}int main() {solve();return 0;
}

B. Couples

题意

N N N对人,每队人身上都穿着相同颜色的衣服,保证每种颜色只会出现两次(即只有同一对人才能拥有相同颜色)。

问:存在多少个人,同时与两个相同颜色衣服的人相邻?

分析

输入后依次判断是否存在第 i i i个人和第 i − 2 i - 2 i2个人衣服颜色相同即可。

代码

#include <bits/stdc++.h>using namespace std;
typedef long long ll;
const int N = 3e5 + 5e2;
int a[N];void solve() {int n;cin >> n;int ans = 0;for (int i = 1; i <= 2 * n; i++) {cin >> a[i];if (i >= 3 && a[i] == a[i - 2]) ans++;}cout << ans << endl;
}int main() {solve();return 0;
}

C.Tile Distance 2(思维)

题意

有一个由大小为 2 × 1 2 \times 1 2×1的瓷砖铺成的平面,其中使用 ( x , y ) (x, y) (x,y)表示位于坐标 ( x + 0.5 , y + 0.5 ) (x + 0.5, y + 0.5) (x+0.5,y+0.5)的网格所在的位置。

问,从瓷砖 ( S x , S y ) (S_{x}, S_{y}) (Sx,Sy)走到瓷砖 ( T x , T y ) (T_{x}, T{y}) (Tx,Ty)最少仅需要经过多少个瓷砖(不包含起点)?

分析

不难发现,每块瓷砖的左半部分的 x , y x, y x,y坐标之和必然为偶数,右半部分的 x , y x, y x,y坐标之和必然为奇数。因此,为了便于处理,可以将输入的两个坐标均移动到瓷砖的左半边,此时不需要经过其他瓷砖。

然后考虑怎么移动最优,可以想到,每次向上或向下移动后,均可以再横向移动一次,此时也不需要经过其他瓷砖,即一次移动可以使两个瓷砖的行列坐标均接近 1 1 1,那么只需要经过 m i n ( ∣ S x − T x ∣ , ∣ S y − T y ∣ ) min(|S_x - T_x|, |S_y - T_y|) min(SxTx,SyTy)次操作,就能保证其中一个坐标相等了。

然后考虑此时的两种情况:

  1. x x x坐标不相等,需要当前的 x x x坐标之差除以二的操作次数

  2. y y y坐标不相等,需要当前的 y y y坐标之差的操作次数

x , y x, y x,y为两个点的 x , y x, y x,y坐标之差的绝对值。

对于情况1,不难发现每次操作均能使两个点的曼哈顿距离接近 2 2 2,共需 x + y 2 \frac{x + y}{2} 2x+y次操作。

对于情况2,不难发现需要的操作次数为 y y y,为便于计算,将操作次数变为 y + y 2 \frac{y + y}{2} 2y+y

两式结合,操作次数变为 m a x ( x , y ) + y 2 \frac{max(x, y) + y}{2} 2max(x,y)+y,按公式计算输出即可。

代码

#include <bits/stdc++.h>using namespace std;
typedef long long ll;
const int N = 3e5 + 5e2;
int a[N];void solve() {ll sx, sy, tx, ty;cin >> sx >> sy >> tx >> ty;if (sx + sy & 1) sx--;if (tx + ty & 1) tx--;ll x = abs(sx - tx);ll y = abs(sy - ty);ll ans = (y + max(x, y)) / 2;cout << ans << endl;
}int main() {solve();return 0;
}

D,E,F更新中…

赛后交流

在比赛结束后,会在交流群中给出比赛题解,同学们可以在赛后查看题解进行补题。

群号: 704572101,赛后大家可以一起交流做题思路,分享做题技巧,欢迎大家的加入。

这篇关于AtCoder Beginner Contest 359 A~C(D~F更新中...)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088045

相关文章

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

GIS图形库更新2024.8.4-9.9

更多精彩内容请访问 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信:digital_twin123 Cesium 本期发布了1.121 版本。重大新闻,Cesium被Bentley收购。 ✨ 功能和改进 默认启用 MSAA,采样 4 次。若要关闭 MSAA,则可以设置scene.msaaSamples = 1。但是通过比较,发现并没有多大改善。