LeetCode.51N皇后详解

2024-06-23 17:52
文章标签 详解 皇后 leetcode.51

本文主要是介绍LeetCode.51N皇后详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

n 皇后问题是一个经典的回溯算法问题,其目标是在一个 n×n 的棋盘上放置 n 个皇后,使得这些皇后不能相互攻击。这意味着任何两个皇后不能处在同一行、同一列或同一斜线上。这个问题不仅是计算机科学中的一个重要问题,也是数学和人工智能领域的研究对象,涉及到组合数学、图论、算法设计等多个领域。

解题思路

回溯法的应用

n 皇后问题的核心解法是回溯算法,这是一种通过试错来寻找问题解决方法的算法。当它通过尝试可能的分步解决方案后发现当前解决方案不可能成立(即不能满足问题的约束条件),它会取消上一步甚至是几步的计算,再通过其他的可能的分步解决方案继续尝试。

检查冲突

在 n 皇后问题中,核心的挑战是如何有效地检查“攻击”(冲突)情况。这通常涉及以下检查:

  1. 列冲突:确保在同一列不放置多于一个皇后。
  2. 行冲突:通常通过算法的设计(一行只放置一个皇后)自然避免。
  3. 对角线冲突:需要检查两种对角线——从左上到右下和从左下到右上。这可以通过计算线性方程来实现,例如使用对角线的索引差和和来标识每条对角线。

数据结构的选择

使用数组来追踪哪些位置是被攻击状态是解决问题的关键:

  • 列标记:使用一个大小为 n 的数组来标记哪些列已被占用。
  • 对角线标记:使用两个大小为 2n-1 的数组来标记两组对角线的占用情况。对于每个皇后在 (r, c) 的位置,它会占用第 c 列,第 r+c"/" 方向对角线和第 r-c+n-1"\" 方向对角线。

代码示例

class Solution {
public:std::vector<std::vector<std::string>> solveNQueens(int n) {std::vector<std::vector<std::string>> solutions;std::vector<std::string> board(n, std::string(n, '.'));std::vector<int> cols(n, 0), diag1(2 * n - 1, 0), diag2(2 * n - 1, 0);backtrack(solutions, board, cols, diag1, diag2, 0, n);return solutions;}private:void backtrack(std::vector<std::vector<std::string>>& solutions,std::vector<std::string>& board, std::vector<int>& cols,std::vector<int>& diag1, std::vector<int>& diag2, int row,int n) {if (row == n) {solutions.push_back(board);return;}for (int col = 0; col < n; col++) {if (cols[col] || diag1[row + col] || diag2[row - col + n - 1]) {continue;}board[row][col] = 'Q';cols[col] = diag1[row + col] = diag2[row - col + n - 1] = 1;backtrack(solutions, board, cols, diag1, diag2, row + 1, n);board[row][col] = '.';cols[col] = diag1[row + col] = diag2[row - col + n - 1] = 0;}}
};

扩展

组合数学

n 皇后问题是组合数学的一个实例,特别是在它涉及到排列和组合的计算上。每种有效的解决方案实际上是对 n 个数字的一个排列,每个数字代表皇后在特定行的列位置。

复杂度分析

虽然回溯算法在理论上是一种暴力搜索方法,它的时间复杂度在最坏情况下是指数级的,但通过有效的剪枝,实际的运行时间可以大大减少。这种算法通常是用于解决复杂度较高、解空间庞大的问题。

图论的视角

从图论的角度看,n 皇后问题可以被看作是在 n×n 的图中找到一个安全的顶点集合,其中任意两个顶点都不是相互可达的。这种图的特殊构造使其成为图着色问题的一个变种。

这篇关于LeetCode.51N皇后详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087855

相关文章

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.