python函数scatter使用

2024-06-23 16:58
文章标签 python 函数 使用 scatter

本文主要是介绍python函数scatter使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近开始学习Python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下:

1、scatter函数原型

2、其中散点的形状参数marker如下:

3、其中颜色参数c如下:

4、基本的使用方法如下:

[python] view plain copy
  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. ax1.scatter(x,y,c = 'r',marker = 'o')  
  17. #设置图标  
  18. plt.legend('x1')  
  19. #显示所画的图  
  20. plt.show()  

结果如下:

5、当scatter后面参数中数组的使用方法,如s,当s是同x大小的数组,表示x中的每个点对应s中一个大小,其他如c,等用法一样,如下:

(1)、不同大小

[python] view plain copy
  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. sValue = x*10  
  17. ax1.scatter(x,y,s=sValue,c='r',marker='x')  
  18. #设置图标  
  19. plt.legend('x1')  
  20. #显示所画的图  
  21. plt.show()  

(2)、不同颜色

[python] view plain copy
  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. cValue = ['r','y','g','b','r','y','g','b','r']  
  17. ax1.scatter(x,y,c=cValue,marker='s')  
  18. #设置图标  
  19. plt.legend('x1')  
  20. #显示所画的图  
  21. plt.show()  

结果:

(3)、线宽linewidths

[python] view plain copy
  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. lValue = x  
  17. ax1.scatter(x,y,c='r',s= 100,linewidths=lValue,marker='o')  
  18. #设置图标  
  19. plt.legend('x1')  
  20. #显示所画的图  
  21. plt.show()  


这篇关于python函数scatter使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087742

相关文章

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.