分治精炼宝库----归并排序应用( ´◔︎ ‸◔︎`)

2024-06-23 15:36

本文主要是介绍分治精炼宝库----归并排序应用( ´◔︎ ‸◔︎`),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.基本概念:

二.归并排序:

 三.交易逆序对总数:

 四.计算右侧小于当前元素的个数:

五.翻转对:

 六.合并k个有序链表:


一.基本概念:

🐻在计算机科学中,分治法是一种很重要的算法。字面上的解释就是“分而治之”,就是把一个复杂的问题分成两个或则更多个相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。🧐分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

当我们对分治算法有了以上的一定了解后,来联系几道题目加深理解~~

二.归并排序:

归并排序的流程充分的体现了「分⽽治之」的思想,⼤体过程分为两步:

  • 分:将数组⼀分为⼆为两部分,⼀直分解到数组的⻓度为1 ,使整个数组的排序过程被分为 「左半部分排序」+「右半部分排序」;
  • 治:将两个较短的「有序数组合并成⼀个⻓的有序数组」,⼀直合并到最初的⻓度。

大致图解过程(图中例子为主):

 咱们以leetcode排序数组题目为例:912. 排序数组 - 力扣(LeetCode)

代码详解:

class Solution {int[] tmp;public int[] sortArray(int[] nums) {int n = nums.length;tmp = new int[n];mergeSort(nums,0,n - 1);return nums;}public void mergeSort(int[] nums,int left,int right){if(left >= right) return ;//取中点划分区域//[left,mid] [mid + 1,right];int mid = left + (right - left) / 2;//排序划分的左数组和右数组mergeSort(nums,left,mid);mergeSort(nums,mid + 1,right);//合并两个有序数组int cur1 = left,cur2 = mid + 1,i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp[i++] = nums[cur1++];}else{tmp[i++] = nums[cur2++];}}//处理没有完全合并的数组while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];//还原数组for(int j = left;j <= right;j++){nums[j] = tmp[j - left];}}}

我们提取一下主要框架,大致就是:

 看这个框架,也就明白那句经典的总结:归并排序就是先把左半边数组排好序,再把右半边数组排好序,然后把两半数组合并。

运行结果:

 三.交易逆序对总数:

题目链接:LCR 170. 交易逆序对的总数 - 力扣(LeetCode)

题目描述:

在股票交易中,如果前一天的股价高于后一天的股价,则可以认为存在一个「交易逆序对」。请设计一个程序,输入一段时间内的股票交易记录 record,返回其中存在的「交易逆序对」总数。

算法思路: 

如果我们将数组从中间划分成两个部分,那么我们可以将逆序对产⽣的⽅式划分成三组:

  • 逆序对中两个元素:全部从左数组中选择
  • 逆序对中两个元素:全部从右数组中选择
  • 逆序对中两个元素:⼀个选左数组另⼀个选右数组

根据排列组合的分类相加原理,这三种情况下的逆序对总和,就是总的逆序对总和。不难发现,这其实和归并排序的主过程一致,所以我们可以利用归并排序的特性,先计算左半部分数组的逆序对,再计算右半部分数组的逆序对数,最后计算一左一右的逆序对个数。三者相加,就是总的逆序对个数。

合并操作时,计算一左一右的逆序对个数:

此时mergeSort(nums,0,nums.length - 1) 就有了新的定义,计算并返回数组区间[0 , nums.length - 1] 的逆序对个数

代码详解:

class Solution {int[] tmp;public int reversePairs(int[] record) {int n = record.length;tmp = new int[n];return mergeSort(record,0,n - 1);}public int mergeSort(int[] nums,int left,int right){if(left >= right) return 0;//取中间点划分区间int mid = left + (right - left)/ 2;//[left,mid][mid + 1,right];int res = 0;//记录结果res += mergeSort(nums,left,mid);res += mergeSort(nums,mid + 1,right);//合并两个有序数组,计算逆序对个数int cur1 = left,cur2 = mid + 1,i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp[i++] = nums[cur1++];}else{res += mid - cur1 + 1;tmp[i++] = nums[cur2++];}}//处理没有完全合并的数组while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];//还原数组for(int j = left;j <= right;j++){nums[j] = tmp[j - left];}return res;}
}

运行结果:

 四.计算右侧小于当前元素的个数:

题目链接:315. 计算右侧小于当前元素的个数 - 力扣(LeetCode)

题目描述:给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是  nums[i] 右侧小于 nums[i] 的元素的数量。

算法思路:

这⼀道题的解法与求数组中的逆序对的解法是类似的,但是这⼀道题要求的不是求总的个数,⽽ 是要返回⼀个数组,记录每⼀个元素的右边有多少个元素⽐⾃⼰⼩。 但是在我们归并排序的过程中,元素的下标是会跟着变化的,因此我们需要⼀个辅助数组,来将数 组元素和对应的下标绑定在⼀起归并,也就是再归并元素的时候,顺势将下标也转移到对应的位置 上。由于我们要快速统计出某⼀个元素后⾯有多少个⽐它⼩的,所以我们采用降序策略:

 代码详解:

class Solution {int[] tmp1;int[] tmp2;int[] index;//记录数组下标位置int[] res;//记录结果List<Integer> ret = new ArrayList<>();//记录返回结果public List<Integer> countSmaller(int[] nums) {int n = nums.length;tmp1 = new int[n];tmp2 = new int[n];res = new int[n];index = new int[n];//初始化坐标位置for(int i = 0;i < n;i++) index[i] = i;mergeSort(nums,0,n - 1);for(int i = 0;i < n;i++) ret.add(res[i]);return ret;}public void mergeSort(int[] nums,int left,int right){if(left >= right) return ;//取中间划分区域int mid = left + (right - left) / 2;mergeSort(nums,left,mid);mergeSort(nums,mid + 1,right);//合并数组,计算逆序对个数int cur1 = left,cur2 = mid + 1,i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp1[i] = nums[cur2];tmp2[i++] = index[cur2++];}else{res[index[cur1]] += right - cur2 + 1;tmp1[i] = nums[cur1];tmp2[i++] = index[cur1++];}}//处理没有完全合并的数组while(cur1 <= mid){tmp1[i] = nums[cur1];tmp2[i++] = index[cur1++];}while(cur2 <= right){tmp1[i] = nums[cur2];tmp2[i++] = index[cur2++];}//还原数组for(int j = left;j <= right;j++){nums[j] = tmp1[j - left];index[j] = tmp2[j - left];}}
}

运行结果:

五.翻转对:

题目链接:493. 翻转对 - 力扣(LeetCode)

题目描述:

给定一个数组 nums ,如果 i < j 且 nums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对

你需要返回给定数组中的重要翻转对的数量。

算法思路:

大思路与求逆序对的思路一样,就是利用归并排序的思想,将求整个数组的翻转对的数量,转化成三部分:左半区间翻转对的数量,右半区间翻转对的数量,一左一右选择时翻转对的数量。重点实在合并过程中,如何计算出翻转对的数量。与上个问题不同的是,上一道题我们可以一边合并一边计算结果,但是这道题左边元素大于右边元素的两倍的条件不符合归并排序时的特性,如果我们直接合并,是无法计算出翻转对的个数的,因此我们要再归并排序的合并之前,排序之后完成对翻转对的统计。

代码详解:

class Solution {int[] tmp;public int reversePairs(int[] nums) {int n = nums.length;tmp = new int[n];return mergeSort(nums,0,n - 1);}public int mergeSort(int[] nums,int left,int right){if(left >= right) return 0;//取中间点划分区间int mid = left + (right - left) / 2;int res = 0;//记录结果//[left,mid] [mid + 1,right]res += mergeSort(nums,left,mid);res += mergeSort(nums,mid + 1,right);int cur1 = left,cur2 = mid + 1,i = 0;//计算翻转对while(cur1 <= mid){//注意处理越界情况while(cur2 <= right && nums[cur2] >= nums[cur1] / 2.0) cur2++;if(cur2 > right){break;}res += right - cur2 + 1;cur1++;}//合并有序数组cur1 = left;cur2 = mid + 1;//重置一下while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp[i++] = nums[cur2++];}else {tmp[i++] = nums[cur1++];}}//处理还没有完全合并的数组while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];//还原数组for(int j = left;j <= right;j++){nums[j] = tmp[j - left];}//返回结果return res;} 
}

运行结果:

 六.合并k个有序链表:

题目链接:23. 合并 K 个升序链表 - 力扣(LeetCode)

题目描述:

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

  • 解法一:分治 

思路:与归并排序数组一样的原理,只不过这里的合并过程是合并两个有序链表,而排序数组是合并两个有序数组。

代码详解:

class Solution {ListNode[] tmp;public ListNode mergeKLists(ListNode[] lists) {if(lists.length == 0) return null;return mergeSort(lists,0,lists.length - 1);}public ListNode mergeSort(ListNode[] lists,int left,int right){if(left >= right) return lists[left];//取中间节点划分两部分int mid = (left + right) / 2;//[left,mid] [mid + 1,right]ListNode l1 =  mergeSort(lists,left,mid);ListNode l2 = mergeSort(lists,mid + 1,right);//合并两个有序链表return merge(l1,l2);}public ListNode merge(ListNode l1,ListNode l2){if(l1 == null) return l2;if(l2 == null) return l1;ListNode cur1 = l1,cur2 = l2;ListNode res = new ListNode(-1);//虚拟节点ListNode pre = res;while(cur1 != null && cur2 != null){if(cur1.val <= cur2.val){pre.next = cur1;pre = cur1;cur1 = cur1.next;}else{pre.next = cur2;pre = cur2;cur2 = cur2.next;}}if(cur1 != null) pre.next = cur1;if(cur2 != null) pre.next = cur2;return res.next;}}
  • 解法二:利用数据结构---堆

算法思路:

合并K 个升序链表时,我们依旧可以选择K 个链表中,头结点值最⼩的那⼀个。那么如何快速的得 到头结点最⼩的是哪⼀个呢?⽤堆这个数据结构就好啦~ 我们可以把所有的头结点放进⼀个⼩根堆中,这样就能快速的找到每次K 个链表中,最⼩的元素是哪 个。然后我们取出最小的节点合并,再将其后面一个位置的索引丢入到小根堆中。

代码详解:

class Solution {public ListNode mergeKLists(ListNode[] lists) {//定义一个优先级队列,排序规则是从小到大PriorityQueue<ListNode> heap = new PriorityQueue<>((v1,v2)-> v1.val - v2.val);//将所有头节点放入到优先级队列中for(ListNode head : lists){if(head != null){heap.offer(head);}}//合并链表ListNode res = new ListNode(-1);//虚拟节点ListNode pre = res;while(!heap.isEmpty()){ListNode t = heap.poll();pre.next = t;pre = t;if(t.next != null) heap.offer(t.next);}return res.next;}
}

参考资料:

 五大常用算法之一:分治算法 - Will_Don - 博客园 (cnblogs.com)

《labuladong算法笔记》

封面来自:《hello 算法》

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

这篇关于分治精炼宝库----归并排序应用( ´◔︎ ‸◔︎`)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087558

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

hdu 1285(拓扑排序)

题意: 给各个队间的胜负关系,让排名次,名词相同按从小到大排。 解析: 拓扑排序是应用于有向无回路图(Direct Acyclic Graph,简称DAG)上的一种排序方式,对一个有向无回路图进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u 在v 的前面。该序列说明了顶点表示的事件或状态发生的整体顺序。比较经典的是在工程活动上,某些工程完成后,另一些工程才能继续,此时

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/