Spark算子:RDD基本转换操作(6)–zip、zipPartitions

2024-06-23 13:18

本文主要是介绍Spark算子:RDD基本转换操作(6)–zip、zipPartitions,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

zip

      def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(T, U)]

       zip函数用于将两个RDD组合成Key/Value形式的RDD,这里默认两个RDD的partition数量以及元素数量都相同,否则会抛出异常。

scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at :21scala> var rdd1 = sc.makeRDD(1 to 5,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at makeRDD at :21scala> var rdd2 = sc.makeRDD(Seq("A","B","C","D","E"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[2] at makeRDD at :21scala> rdd1.zip(rdd2).collect
res0: Array[(Int, String)] = Array((1,A), (2,B), (3,C), (4,D), (5,E))           scala> rdd2.zip(rdd1).collect
res1: Array[(String, Int)] = Array((A,1), (B,2), (C,3), (D,4), (E,5))scala> var rdd3 = sc.makeRDD(Seq("A","B","C","D","E"),3)
rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at makeRDD at :21scala> rdd1.zip(rdd3).collect
java.lang.IllegalArgumentException: Can't zip RDDs with unequal numbers of partitions
//如果两个RDD分区数不同,则抛出异常

zipPartitions

      zipPartitions函数将多个RDD按照partition组合成为新的RDD,该函数需要组合的RDD具有相同的分区数,但对于每个分区内的元素数量没有要求。

      该函数有好几种实现,可分为三类:

      参数是一个RDD
            def zipPartitions[B, V](rdd2: RDD[B])(f: (Iterator[T], Iterator[B]) => Iterator[V])(implicit arg0: ClassTag[B], arg1:       ClassTag[V]): RDD[V]

            def zipPartitions[B, V](rdd2: RDD[B], preservesPartitioning: Boolean)(f: (Iterator[T], Iterator[B]) => Iterator[V])      (implicit arg0: ClassTag[B], arg1: ClassTag[V]): RDD[V]

      这两个区别就是参数preservesPartitioning,是否保留父RDD的partitioner分区信息

      映射方法f参数为两个RDD的迭代器。

scala> var rdd1 = sc.makeRDD(1 to 5,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[22] at makeRDD at :21scala> var rdd2 = sc.makeRDD(Seq("A","B","C","D","E"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[23] at makeRDD at :21//rdd1两个分区中元素分布:
scala> rdd1.mapPartitionsWithIndex{|         (x,iter) => {|           var result = List[String]()|             while(iter.hasNext){|               result ::= ("part_" + x + "|" + iter.next())|             }|             result.iterator|            |         }|       }.collect
res17: Array[String] = Array(part_0|2, part_0|1, part_1|5, part_1|4, part_1|3)//rdd2两个分区中元素分布
scala> rdd2.mapPartitionsWithIndex{|         (x,iter) => {|           var result = List[String]()|             while(iter.hasNext){|               result ::= ("part_" + x + "|" + iter.next())|             }|             result.iterator|            |         }|       }.collect
res18: Array[String] = Array(part_0|B, part_0|A, part_1|E, part_1|D, part_1|C)//rdd1和rdd2做zipPartition
scala> rdd1.zipPartitions(rdd2){|       (rdd1Iter,rdd2Iter) => {|         var result = List[String]()|         while(rdd1Iter.hasNext && rdd2Iter.hasNext) {|           result::=(rdd1Iter.next() + "_" + rdd2Iter.next())|         }|         result.iterator|       }|     }.collect
res19: Array[String] = Array(2_B, 1_A, 5_E, 4_D, 3_C)


      参数是两个RDD
            def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C])(f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V])(implicit       arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]

            def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C], preservesPartitioning: Boolean)(f: (Iterator[T],

      Iterator[B],Iterator[C]) => Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]


      用法同上面,只不过该函数参数为两个RDD,映射方法f输入参数为两个RDD的迭代器。

scala> var rdd1 = sc.makeRDD(1 to 5,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at makeRDD at :21scala> var rdd2 = sc.makeRDD(Seq("A","B","C","D","E"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[28] at makeRDD at :21scala> var rdd3 = sc.makeRDD(Seq("a","b","c","d","e"),2)
rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[29] at makeRDD at :21//rdd3中个分区元素分布
scala> rdd3.mapPartitionsWithIndex{|         (x,iter) => {|           var result = List[String]()|             while(iter.hasNext){|               result ::= ("part_" + x + "|" + iter.next())|             }|             result.iterator|            |         }|       }.collect
res21: Array[String] = Array(part_0|b, part_0|a, part_1|e, part_1|d, part_1|c)//三个RDD做zipPartitions
scala> var rdd4 = rdd1.zipPartitions(rdd2,rdd3){|       (rdd1Iter,rdd2Iter,rdd3Iter) => {|         var result = List[String]()|         while(rdd1Iter.hasNext && rdd2Iter.hasNext && rdd3Iter.hasNext) {|           result::=(rdd1Iter.next() + "_" + rdd2Iter.next() + "_" + rdd3Iter.next())|         }|         result.iterator|       }|     }
rdd4: org.apache.spark.rdd.RDD[String] = ZippedPartitionsRDD3[33] at zipPartitions at :27scala> rdd4.collect
res23: Array[String] = Array(2_B_b, 1_A_a, 5_E_e, 4_D_d, 3_C_c)

       参数是三个RDD
      def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D])(f: (Iterator[T], Iterator[B], Iterator[C],      Iterator[D]) => Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3: ClassTag[V]): RDD[V]

      def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D], preservesPartitioning: Boolean)(f: (Iterator[T],      Iterator[B], Iterator[C], Iterator[D]) => Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3:      ClassTag[V]): RDD[V]

      用法同上面,只不过这里又多了个一个RDD而已。

      转载请注明:Spark算子:RDD基本转换操作(6)–zip、zipPartitions

这篇关于Spark算子:RDD基本转换操作(6)–zip、zipPartitions的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087263

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

MyBatis-Flex BaseMapper的接口基本用法小结

《MyBatis-FlexBaseMapper的接口基本用法小结》本文主要介绍了MyBatis-FlexBaseMapper的接口基本用法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具... 目录MyBATis-Flex简单介绍特性基础方法INSERT① insert② insertSelec

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from