AI大眼萌探索 AI 新世界:Ollama 使用指南【1】

2024-06-23 00:52

本文主要是介绍AI大眼萌探索 AI 新世界:Ollama 使用指南【1】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在人工智能的浪潮中,Ollama 的出现无疑为 Windows 用户带来了一场革命。这款工具平台以其开创性的功能,简化了 AI 模型的开发与应用,让每一位爱好者都能轻松驾驭 AI 的强大力量。大家好,我是AI大眼萌,今天我们将带大家了解这款工具平台。

🤖 什么是 Ollama?

Ollama 不仅仅是一个 AI 和 ML (Machine Learning)工具平台,它是技术社区中的一股清流,以其直观高效的工具,让 AI 模型的开发变得触手可及。无论是资深专家还是新手,都能在 Ollama 上找到自己的舞台。

🌟Ollama优势

在 AI 工具的海洋中,Ollama 以其独特优势脱颖而出:

  • 🔧 自动硬件加速:智能识别并利用最优硬件资源,简化配置,提升效率。
  • 🚫 无需虚拟化:告别复杂环境配置,直接投身于 AI 项目的开发。
  • 📚 接入丰富模型库:从 Lamma3到 qwen2,Ollama 的模型库应有尽有。
  • 🔗 Ollama 的常驻 API:简化 AI 功能与项目对接,提升工作效率。

🛠️ Ollama Windows使用指南

下面是如何在 Windows 上使用 Ollama 的详细指南:

步骤 1:下载与安装

  • 访问 Ollama Windows Preview页面,下载安装程序。

  • 双击运行,一键安装。
    在这里插入图片描述

步骤 2:启动与模型获取

  • 启动 Ollama

    Usage:ollama [flags]ollama [command]
    Available Commands:serve       Start ollamacreate      Create a model from a Modelfileshow        Show information for a modelrun         Run a modelpull        Pull a model from a registrypush        Push a model to a registrylist        List modelsps          List running modelscp          Copy a modelrm          Remove a modelhelp        Help about any command启动ollama服务:   ollama serve
    
  • 使用命令行加载模型,开始你的 AI 之旅。

    ollama run [modelname]
    ollama run gemma:2b
    

    在这里插入图片描述

执行以上命令后,Ollama 将开始初始化,并自动从 Ollama 模型库中拉取并加载所选模型。一旦准备就绪,就可以向它发送指令,它会利用所选模型来进行理解和回应。

在这里插入图片描述

  • 记得将modelname名称换成要运行的模型名称,常用的有:
ModelParametersSizeDownload
Qwen2 7B7B4.5Gollama run qwen:7b
Qwen2 72B72B41Gollama run qwen:72b
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Phi 3 Mini3.8B2.3GBollama run phi3
Phi 3 Medium14B7.9GBollama run phi3:medium
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Mistral7B4.1GBollama run mistral
Moondream 21.4B829MBollama run moondream
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Solar10.7B6.1GBollama run solar

模型存储在哪里?如需更换地点,可以参考环境配置章节

  • macOS: ~/.ollama/models
  • Linux: /usr/share/ollama/.ollama/models
  • Windows: C:\Users\%username%\.ollama\models

步骤 3:模型应用

在这里插入图片描述

步骤 4:API 连接

将 AI 功能整合到你的应用中,Ollama API 是关键。

默认端口为11434

在这里插入图片描述

Ollama Linux 使用指南

步骤 1:下载与安装

curl -fsSL https://ollama.com/install.sh | sh

在这里插入图片描述

步骤 2:启动与模型获取

ollama serve
ollama run [modelname]

在这里插入图片描述

步骤 3与4: 与之前一致。

Ollama 环境变量设置

在Linux上设置环境变量

如果Ollama作为systemd服务运行,通过systemctl设置环境变量:

  1. 使用systemctl edit ollama.service命令编辑systemd服务,将打开一个编辑器。

  2. 对每个环境变量,在[Service]部分添加一行Environment:

  3. [Service]

    Environment="OLLAMA_HOST=:8000" #要更改侦听地址和端口,可以环境变量:

  4. 保存并退出。

  5. 重新加载systemd并重启Ollama:

systemctl daemon-reload
systemctl restart ollama

在Windows上设置环境变量

在Windows上,Ollama会继承您的用户和系统环境变量。

1. 首先通过任务栏图标退出Ollama,
2. 从控制面板编辑系统环境变量,
3. 为OLLAMA_HOST、OLLAMA_MODELS等编辑或新建变量。a、要更改侦听地址和端口,可以添加以下环境变量:变量名:OLLAMA_HOST变量值(端口)::8000b、要更为debug模式,可以添加以下环境变量:变量名:OLLAMA_DEBUG变量值(端口):1  c、模型存储位置要更为指定路径变量名:OLLAMA_MODELS变量值(端口):指定的路径 
4. 点击OK/Apply保存,

使用代理服务器访问Ollama?

Ollama运行一个HTTP服务器,可以通过代理服务器,比如Nginx,进行公开。具体操作方法是配置代理转发请求,并可选设置所需的头部(如果不在网络上公开Ollama)。例如,使用Nginx配置如下:

  server {listen 80;server_name 192.168.70.1;  location / {proxy_pass http://localhost:11434;proxy_set_header Host localhost:11434;}}

使用python调用ollama

1、安装依赖库

pip install ollama langchain_community langchain  

2、测试代码

import ollama 
response =ollama.chat(model='qwen2:7b',messages=[{'role':'user','content':'中国的首都在哪里'},
])
print(response['message']['content'])

在这里插入图片描述

3、简单的人机交互界面

import ollama 
def get_completion(prompt):response =ollama.chat(model='qwen2:7b',messages=[{'role':'user','content':prompt},])return response['message']['content'].strip()while True:user_input = input("你: ")if user_input.lower() == '退出':print("聊天结束。")breakprint("\n机器人: 正在处理你的请求...")response = get_completion(user_input)print("机器人:", response)

结语

通过本教程,我们学习了 Ollama的简单安装与使用,让我们一起探索、实践、创新!
如果您发现这篇文章对您有所启发或帮助, 请不吝赐赞,为我【点赞】、【转发】、【关注】,带你一起玩转AI !

全网ID|AI大眼萌

这篇关于AI大眼萌探索 AI 新世界:Ollama 使用指南【1】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085873

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.

Rsnapshot怎么用? 基于Rsync的强大Linux备份工具使用指南

《Rsnapshot怎么用?基于Rsync的强大Linux备份工具使用指南》Rsnapshot不仅可以备份本地文件,还能通过SSH备份远程文件,接下来详细介绍如何安装、配置和使用Rsnaps... Rsnapshot 是一款开源的文件系统快照工具。它结合了 Rsync 和 SSH 的能力,可以帮助你在 li

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20