Kotlin基础——Typeclass

2024-06-22 18:36
文章标签 基础 kotlin typeclass

本文主要是介绍Kotlin基础——Typeclass,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高阶类型

如在Iterable新增泛型方法时

interface Iterable<T> {fun filter(p: (T) -> Boolean): Iterable<T>fun remove(p: (T) -> Boolean): Iterable<T> = filter { x -> !p(x) }
}

对应的List、Set实现上述方法时仍需要返回具体的类型

interface List<T> : Iterable<T> {fun filter(p: (T) -> Boolean): List<T>fun remove(p: (T) -> Boolean): List<T> = filter { x -> !p(x) }
}interface Set<T> : Iterable<T> {fun filter(p: (T) -> Boolean): Set<T>fun remove(p: (T) -> Boolean): Set<T> = filter { x -> !p(x) }
}

使用高阶类型可以解决上述问题,高阶类型指的是用类型构造新类型,Kotlin可以通过扩展实现高阶类型(下面例子都是根据这个来实现)

interface Kind<out F, out A>sealed class List<out A> : Kind<List.K, A> {object K
}inline fun <A> Kind<List.K, A>.unwrap(): List<A> = this as List<A>object Nil : List<Nothing>()
data class Cons<A>(val head: A, val tail: List<A>) : List<A>()
  • Kind<out F, out A>表示类型构造器F应用类型参数A产生的新类型,F实际上不能携带类型参数
  • List.K是List的高阶类型,也就是说传入不同的A,根据List.K会有不同类型
  • unwrap()将Kind<List.K, A>类型转为List<A>进行操作
  • Nil为空列表用作尾部,Cons由元素head和及其指向tail构成的链表

Functor

Functor的map():通过f()方法将Kind<F, A>类型转为Kind<F, B>类型

interface Functor<F> {fun <A, B> Kind<F, A>.map(f: (A) -> B): Kind<F, B>
}object ListFunctor : Functor<List.K> {override fun <A, B> Kind<List.K, A>.map(f: (A) -> B): Kind<List.K, B> {return when (this) {is Cons -> {val t = (this.tail.map(f)).unwrap()Cons<B>(f(this.head), t)}else -> Nil}}
}

使用方法如下,将Con<Int>转为了Con<String>

val cons: Cons<Int> = Cons(1, Nil)
println(cons.head::class)
println(cons.tail)
ListFunctor.run {val cons2: Cons<String> = cons.map { it.toString() } as Cons<String>println(cons2.head::class)println(cons2.tail)
}

打印如下

class kotlin.Int
com.demo.demo1.Nil@5361555
class kotlin.String
com.demo.demo1.Nil@5361555

Eq和ListEq

Eq

Eq根据传入的类型参数,对其制定比较规则

interface Eq<F> {fun F.eq(that: F): Boolean
}
object IntEq : Eq<Int> {override fun Int.eq(that: Int): Boolean {return this == that}
}

如上,对于Int,判断值是否相等,使用方法如下

IntEq.run {val a = 1println(a.eq(1))println(a.eq(2))
}

打印如下

true
false

ListEq

ListEq可根据指定类型参数的比较规则,实现对两个List比较

abstract class ListEq<A>(val a: Eq<A>) : Eq<Kind<List.K, A>> {override fun Kind<List.K, A>.eq(that: Kind<List.K, A>): Boolean {val curr = thisreturn if (curr is Cons && that is Cons) {val headEq = a.run {curr.head.eq(that.head)}if (headEq) curr.tail.eq(that.tail) else false} else curr is Nil && that is Nil}
}
object IntListEq : ListEq<Int>(IntEq)

如上,实现IntListEq,使用方法如下

IntListEq.run {val a = Cons(1, Cons(2, Nil))val b = Cons(1, Cons(2, Nil))val c = Cons(1, Nil)println(a.eq(b))println(a.eq(c))
}

打印如下

true
false

show和Foldable

Show

show根据传入的类型参数,对其制定输出规则

interface Show<F> {fun F.show(): String
}
class Book(val name: String)
object BookShow : Show<Book> {override fun Book.show(): String = this.name
}

如上,对于Book,输出name属性,调用方法如下

BookShow.run {println(Book("Dive into Kotlin").show())
}

打印如下

Dive into Kotlin

Foldable

Foldable根据传入的类型参数,对其进行拼接(不太能理解这个fold的实现。。。)

interface Foldable<F> {fun <A, B> Kind<F, A>.fold(init: B): ((B, A) -> B) -> B
}
object ListFoldable : Foldable<List.K> {override fun <A, B> Kind<List.K, A>.fold(init: B): ((B, A) -> B) -> B = { f ->fun fold0(l: List<A>, v: B): B {return when (l) {is Cons -> {fold0(l.tail, f(v, l.head))}else -> v}}fold0(this.unwrap(), init)}
}

ListShow

abstract class ListShow<A>(val a: Show<A>) : Show<Kind<List.K, A>> {override fun Kind<List.K, A>.show(): String {val fa = thisreturn "[" + ListFoldable.run {fa.fold(listOf<String>())({ r, i ->r + a.run { i.show() }}).joinToString() + "]"}}
}
object BookListShow : ListShow<Book>(BookShow)

调用方法如下

BookListShow.run {println(Cons(Book("Dive into Kotlin"),Cons(Book("Thinking in Java"), Nil)).show())
}

打印如下

[Dive into Kotlin, Thinking in Java]

Monoid

Monoid满足结合律和同一律

interface Monoid<A> {fun zero(): Afun A.append(b: A): A
}

如对于字符串Monoid

  • 结合律:(“A”+“B”)+“C” == “A”+(“B”+“C”)
  • 同一律:“A”+“” == “A”
object StringConcatMonoid : Monoid<String> {override fun zero(): String = ""override fun String.append(b: String): String = this + b
}
fun <A> List<A>.sum(ma: Monoid<A>): A {val fa = thisreturn ListFoldable.run {fa.fold(ma.zero())({ s, i ->ma.run {s.append(i)}})}
}

使用方式如下

println(Cons("Dive ",Cons("into ",Cons("Kotlin", Nil))).sum(StringConcatMonoid)
)

打印如下

Dive into Kotlin

Monad

Monad包含了最小的原始操作集合pure()和flatMap(),通过这两个组合,我们可以实现更复杂的数据转换操作

interface Monad<F> {fun <A> pure(a: A): Kind<F, A>fun <A, B> Kind<F, A>.flatMap(f: (A) -> Kind<F, B>): Kind<F, B>
}

如下实现ListMonad

object ListMonad : Monad<List.K> {private fun <A> append(fa: Kind<List.K, A>, fb: Kind<List.K, A>): Kind<List.K, A> {return if (fa is Cons) {Cons(fa.head, append(fa.tail, fb).unwrap())} else {fb}}override fun <A> pure(a: A): Kind<List.K, A> {return Cons(a, Nil)}override fun <A, B> Kind<List.K, A>.flatMap(f: (A) -> Kind<List.K, B>): Kind<List.K, B> {val fa = thisval empty: Kind<List.K, B> = Nilreturn ListFoldable.run {fa.fold(empty)({ r, l ->append(r, f(l))})}}
}

Applicative

数学上3中代数结构关系如下Functor -> Applicative -> Monad

interface Functor<F> {fun <A, B> Kind<F, A>.map(f: (A) -> B): Kind<F, B>
}interface Applicative<F> : Functor<F> {fun <A> pure(a: A): Kind<F, A>fun <A, B> Kind<F, A>.ap(f: Kind<F, (A) -> B>): Kind<F, B>override fun <A, B> Kind<F, A>.map(f: (A) -> B): Kind<F, B> {return ap(pure(f))}
}interface Monad<F> : Applicative<F> {fun <A, B> Kind<F, A>.flatMap(f: (A) -> Kind<F, B>): Kind<F, B>override fun <A, B> Kind<F, A>.ap(f: Kind<F, (A) -> B>): Kind<F, B> {return f.flatMap { fn ->this.flatMap { a ->pure(fn(a))}}}
}

Option和OptionT

Kotlin中没有checked Exception,而是使用类型代替异常处理错误

Either和EitherT

这篇关于Kotlin基础——Typeclass的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085082

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

kotlin中的数据转换方法(示例详解)

《kotlin中的数据转换方法(示例详解)》这篇文章介绍了Kotlin中将数字转换为字符串和字符串转换为数字的多种方法,包括使用`toString()`、字符串模板、格式化字符串、处理可空类型等,同时... 目录1. 直接使用 toString() 方法2. 字符串模板(自动转换)3. 格式化字符串(控制输

kotlin中的行为组件及高级用法

《kotlin中的行为组件及高级用法》Jetpack中的四大行为组件:WorkManager、DataBinding、Coroutines和Lifecycle,分别解决了后台任务调度、数据驱动UI、异... 目录WorkManager工作原理最佳实践Data Binding工作原理进阶技巧Coroutine

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件