本文主要是介绍常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
时间复杂度O(n^2)
1、插入排序 (Insertion Sort)
从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中从后向前扫描;如果该元素(已排序)大于新元素,将该元素移到下一位置;重复步骤,直到找到已排序的元素小于或者等于新元素的位置;将新元素插入到该位置后。
void insertionSort(int arr[], int n) { for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; --j; } arr[j + 1] = key; }
}
2、冒泡排序 (Bubble Sort)
重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
void bubbleSort(int arr[], int n) { for (int i = 0; i < n - 1; ++i) { for (int j = 0; j < n - i - 1; ++j) { if (arr[j] > arr[j + 1]) { std::swap(arr[j], arr[j + 1]); } } }
}
3、简单选择排序 (Selection Sort)
每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
void selectionSort(int arr[], int n) { for (int i = 0; i < n - 1; i++) { int min_idx = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[min_idx]) { min_idx = j; } } std::swap(arr[min_idx], arr[i]); }
}
时间复杂度O(nlog2n)
4、希尔排序(Shell Sort)
是插入排序的一种又称“缩小增量排序”,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法的基本思想是:先将整个待排序的记录序列分割成为若干子序列(由相隔某个“增量”的记录组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。
(这里只给出增量的简化选择,实际应用中增量序列的选择会更复杂)
void shellSort(int arr[], int n) { int gap = n / 2; while (gap > 0) { for (int i = gap; i < n; ++i) { int temp = arr[i]; int j = i; while (j >= gap && arr[j - gap] > temp) { arr[j] = arr[j - gap]; j -= gap; } arr[j] = temp; } gap /= 2; }
}
5、快速排序(Quick Sort)
通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
int partition(int arr[], int low, int high) { int pivot = arr[high]; int i = (low - 1); for (int j = low; j <= high - 1; j++) { if (arr[j] < pivot) { i++; std::swap(arr[i], arr[j]); } } std::swap(arr[i + 1], arr[high]); return (i + 1);
} void quickSort(int arr[], int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); }
}
6、堆排序(Heap Sort)
堆排序是利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。堆排序主要要解决两个问题:
1)如何根据给定的序列建初始堆
2)如何在交换掉根结点后,将剩下的结点调整为新的堆(筛选)
void set(int p,int m){//小顶堆int i,j;i=p;j=i*2;while(j<=m){if(j<=m-1&&k[j]>k[j+1])//改为<j++;if(k[j]>=k[i])//改为<=,则为大顶堆break;else{swap(k[i],k[j]);i=j;j=i*2;}}
}void heapSort(){int i,j;for(i=n/2;i>0;i--)//建堆set(i,n);for(i=n;i>1;i--)//排序{swap(k[i],k[1]);set(1,i-1);}
}
7、归并排序 (Merge Sort)
归并排序采用分治法的思想,将数组分成两半,分别对它们进行排序,然后将结果合并起来。
1)编写一个辅助函数来合并两个已排序的子数组。
2)编写主归并排序函数,该函数将递归地分解数组,直到子数组只包含一个元素(已排序),然后合并这些子数组,直到整个数组排序完成。
void merge(int arr[], int left[], int leftSize, int right[], int rightSize) { int i = 0, j = 0, k = 0; while (i < leftSize && j < rightSize) { if (left[i] <= right[j]) { arr[k++] = left[i++]; } else { arr[k++] = right[j++]; } } while (i < leftSize) { arr[k++] = left[i++]; } while (j < rightSize) { arr[k++] = right[j++]; }
} void mergeSort(int arr[], int left, int right) { if (left < right) { int mid = left + (right - left) / 2; int leftSize = mid - left + 1; int rightSize = right - mid; int leftArr[leftSize], rightArr[rightSize]; // 拷贝数据到临时数组 for (int i = 0; i < leftSize; i++) { leftArr[i] = arr[left + i]; } for (int j = 0; j < rightSize; j++) { rightArr[j] = arr[mid + 1 + j]; } // 递归地对子数组进行排序 mergeSort(leftArr, 0, leftSize - 1); mergeSort(rightArr, 0, rightSize - 1); // 合并两个已排序的子数组 merge(arr, leftArr, leftSize, rightArr, rightSize); }
}
时间复杂度O(d(n+rd))
8、基数排序(Radix Sort)
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。为了适用于负数和非整数,这里给出一个简化的版本,仅适用于非负整数,并且假设所有整数的位数相同(或可以通过填充前导零来使它们具有相同的位数)。
#include <vector>
#include <algorithm> void countingSort(std::vector<int>& arr, int exp) { std::vector<int> output(arr.size()); std::vector<int> count(10, 0); // 存储每个桶中的元素数量 for (int i = 0; i < arr.size(); i++) count[(arr[i] / exp) % 10]++; // 更改count[i],使其包含每个数字小于或等于i的数量 for (int i = 1; i < 10; i++) count[i] += count[i - 1]; // 构建输出数组 for (int i = arr.size() - 1; i >= 0; i--) { output[count[(arr[i] / exp) % 10] - 1] = arr[i]; count[(arr[i] / exp) % 10]--; } // 复制回原数组 for (int i = 0; i < arr.size(); i++) arr[i] = output[i];
} void radixsort(std::vector<int>& arr) { int maxVal = *std::max_element(arr.begin(), arr.end()); // 找到最大数的位数 int exp = 1; while (maxVal / exp > 0) { countingSort(arr, exp); exp *= 10; }
}
或者
#include <iostream>
#include <cmath>
#include <algorithm> // 使用std::max来找到数组中的最大值 // 获取数组中的最大值
int getMax(int arr[], int n) { int mx = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > mx) { mx = arr[i]; } } return mx;
} // 基数排序函数
void radixsort(int arr[], int n) { // 找到数组中的最大值 int maxVal = getMax(arr, n); // 基数排序使用计数排序作为子程序 // 这里为了简单起见,我们假设所有的整数都是非负的 // 如果有负数,需要做适当的转换 // 对每一位执行计数排序 for (int exp = 1; maxVal / exp > 0; exp *= 10) { int output[n]; // 输出数组 int count[10] = {0}; // 计数器数组 // 存储每个元素的频次 for (int i = 0; i < n; i++) { int index = (arr[i] / exp) % 10; count[index]++; } // 更改count[i]的值,这样它现在包含位置i处之前的所有元素 for (int i = 1; i < 10; i++) { count[i] += count[i - 1]; } // 生成输出数组 for (int i = n - 1; i >= 0; i--) { int index = (arr[i] / exp) % 10; output[count[index] - 1] = arr[i]; count[index]--; } // 将排序后的元素复制回原数组 for (int i = 0; i < n; i++) { arr[i] = output[i]; } }
} int main() { int arr[] = {170, 45, 75, 90, 802, 24, 2, 66}; int n = sizeof(arr) / sizeof(arr[0]); radixsort(arr, n); std::cout << "Sorted array: \n"; for (int i = 0; i < n; i++) { std::cout << arr[i] << " "; } std::cout << std::endl; return 0;
}
这篇关于常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!