常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序

本文主要是介绍常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间复杂度O(n^2)

1、插入排序 (Insertion Sort)

        从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中从后向前扫描;如果该元素(已排序)大于新元素,将该元素移到下一位置;重复步骤,直到找到已排序的元素小于或者等于新元素的位置;将新元素插入到该位置后。

void insertionSort(int arr[], int n) {  for (int i = 1; i < n; ++i) {  int key = arr[i];  int j = i - 1;  while (j >= 0 && arr[j] > key) {  arr[j + 1] = arr[j];  --j;  }  arr[j + 1] = key;  }  
}

2、冒泡排序 (Bubble Sort)

        重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

void bubbleSort(int arr[], int n) {  for (int i = 0; i < n - 1; ++i) {  for (int j = 0; j < n - i - 1; ++j) {  if (arr[j] > arr[j + 1]) {  std::swap(arr[j], arr[j + 1]);  }  }  }  
}

3、简单选择排序 (Selection Sort)

        每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

void selectionSort(int arr[], int n) {  for (int i = 0; i < n - 1; i++) {  int min_idx = i;  for (int j = i + 1; j < n; j++) {  if (arr[j] < arr[min_idx]) {  min_idx = j;  }  }  std::swap(arr[min_idx], arr[i]);  }  
}  

时间复杂度O(nlog2n)

4、希尔排序(Shell Sort)

        是插入排序的一种又称“缩小增量排序”,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法的基本思想是:先将整个待排序的记录序列分割成为若干子序列(由相隔某个“增量”的记录组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。
(这里只给出增量的简化选择,实际应用中增量序列的选择会更复杂)

void shellSort(int arr[], int n) {  int gap = n / 2;  while (gap > 0) {  for (int i = gap; i < n; ++i) {  int temp = arr[i];  int j = i;  while (j >= gap && arr[j - gap] > temp) {  arr[j] = arr[j - gap];  j -= gap;  }  arr[j] = temp;  }  gap /= 2;  }  
}

5、快速排序(Quick Sort)

        通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

int partition(int arr[], int low, int high) {  int pivot = arr[high];  int i = (low - 1);  for (int j = low; j <= high - 1; j++) {  if (arr[j] < pivot) {  i++;  std::swap(arr[i], arr[j]);  }  }  std::swap(arr[i + 1], arr[high]);  return (i + 1);  
}  void quickSort(int arr[], int low, int high) {  if (low < high) {  int pi = partition(arr, low, high);  quickSort(arr, low, pi - 1);  quickSort(arr, pi + 1, high);  }  
}

6、堆排序(Heap Sort)

        堆排序是利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。堆排序主要要解决两个问题:

        1)如何根据给定的序列建初始堆

         2)如何在交换掉根结点后,将剩下的结点调整为新的堆(筛选)

void set(int p,int m){//小顶堆int i,j;i=p;j=i*2;while(j<=m){if(j<=m-1&&k[j]>k[j+1])//改为<j++;if(k[j]>=k[i])//改为<=,则为大顶堆break;else{swap(k[i],k[j]);i=j;j=i*2;}}
}void heapSort(){int i,j;for(i=n/2;i>0;i--)//建堆set(i,n);for(i=n;i>1;i--)//排序{swap(k[i],k[1]);set(1,i-1);}
}

7、归并排序 (Merge Sort)

        归并排序采用分治法的思想,将数组分成两半,分别对它们进行排序,然后将结果合并起来。

        1)编写一个辅助函数来合并两个已排序的子数组。

        2)编写主归并排序函数,该函数将递归地分解数组,直到子数组只包含一个元素(已排序),然后合并这些子数组,直到整个数组排序完成。

void merge(int arr[], int left[], int leftSize, int right[], int rightSize) {  int i = 0, j = 0, k = 0;  while (i < leftSize && j < rightSize) {  if (left[i] <= right[j]) {  arr[k++] = left[i++];  } else {  arr[k++] = right[j++];  }  }  while (i < leftSize) {  arr[k++] = left[i++];  }  while (j < rightSize) {  arr[k++] = right[j++];  }  
}  void mergeSort(int arr[], int left, int right) {  if (left < right) {  int mid = left + (right - left) / 2;  int leftSize = mid - left + 1;  int rightSize = right - mid;  int leftArr[leftSize], rightArr[rightSize];  // 拷贝数据到临时数组  for (int i = 0; i < leftSize; i++) {  leftArr[i] = arr[left + i];  }  for (int j = 0; j < rightSize; j++) {  rightArr[j] = arr[mid + 1 + j];  }  // 递归地对子数组进行排序  mergeSort(leftArr, 0, leftSize - 1);  mergeSort(rightArr, 0, rightSize - 1);  // 合并两个已排序的子数组  merge(arr, leftArr, leftSize, rightArr, rightSize);  }  
}  

时间复杂度O(d(n+rd))

8、基数排序(Radix Sort)

        基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。为了适用于负数和非整数,这里给出一个简化的版本,仅适用于非负整数,并且假设所有整数的位数相同(或可以通过填充前导零来使它们具有相同的位数)。

#include <vector>  
#include <algorithm>  void countingSort(std::vector<int>& arr, int exp) {  std::vector<int> output(arr.size());  std::vector<int> count(10, 0);  // 存储每个桶中的元素数量  for (int i = 0; i < arr.size(); i++)  count[(arr[i] / exp) % 10]++;  // 更改count[i],使其包含每个数字小于或等于i的数量  for (int i = 1; i < 10; i++)  count[i] += count[i - 1];  // 构建输出数组  for (int i = arr.size() - 1; i >= 0; i--) {  output[count[(arr[i] / exp) % 10] - 1] = arr[i];  count[(arr[i] / exp) % 10]--;  }  // 复制回原数组  for (int i = 0; i < arr.size(); i++)  arr[i] = output[i];  
}  void radixsort(std::vector<int>& arr) {  int maxVal = *std::max_element(arr.begin(), arr.end());  // 找到最大数的位数  int exp = 1;  while (maxVal / exp > 0) {  countingSort(arr, exp);  exp *= 10;  }  
}  

或者

#include <iostream>  
#include <cmath>  
#include <algorithm> // 使用std::max来找到数组中的最大值  // 获取数组中的最大值  
int getMax(int arr[], int n) {  int mx = arr[0];  for (int i = 1; i < n; i++) {  if (arr[i] > mx) {  mx = arr[i];  }  }  return mx;  
}  // 基数排序函数  
void radixsort(int arr[], int n) {  // 找到数组中的最大值  int maxVal = getMax(arr, n);  // 基数排序使用计数排序作为子程序  // 这里为了简单起见,我们假设所有的整数都是非负的  // 如果有负数,需要做适当的转换  // 对每一位执行计数排序  for (int exp = 1; maxVal / exp > 0; exp *= 10) {  int output[n]; // 输出数组  int count[10] = {0}; // 计数器数组  // 存储每个元素的频次  for (int i = 0; i < n; i++) {  int index = (arr[i] / exp) % 10;  count[index]++;  }  // 更改count[i]的值,这样它现在包含位置i处之前的所有元素  for (int i = 1; i < 10; i++) {  count[i] += count[i - 1];  }  // 生成输出数组  for (int i = n - 1; i >= 0; i--) {  int index = (arr[i] / exp) % 10;  output[count[index] - 1] = arr[i];  count[index]--;  }  // 将排序后的元素复制回原数组  for (int i = 0; i < n; i++) {  arr[i] = output[i];  }  }  
}  int main() {  int arr[] = {170, 45, 75, 90, 802, 24, 2, 66};  int n = sizeof(arr) / sizeof(arr[0]);  radixsort(arr, n);  std::cout << "Sorted array: \n";  for (int i = 0; i < n; i++) {  std::cout << arr[i] << " ";  }  std::cout << std::endl;  return 0;  
}

28edbba515494195b2405823ebde7468.png

 

这篇关于常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
http://www.chinasem.cn/article/1084957

相关文章

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.