【C++】平衡二叉树(AVL树)的实现

2024-06-22 11:52
文章标签 二叉树 c++ 实现 平衡 avl

本文主要是介绍【C++】平衡二叉树(AVL树)的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、AVL树的概念
  • 二、AVL树的实现
    • 1、AVL树的定义
    • 2. 平衡二叉树的插入
      • 2.1 按照二叉排序树的方式插入并更新平衡因子
      • 2.2 AVL树的旋转
        • 2.2.1 新节点插入较高左子树的左侧(LL平衡旋转)
        • 2.2.2 新节点插入较高右子树的右侧(RR平衡旋转)
        • 2.2.3 新节点插入较高左子树的右侧(LR平衡旋转)
        • 2.2.4 新节点插入较高右子树的左侧(RL平衡旋转)
        • 2.2.5 总结
    • 3 平衡二叉树的删除(了解即可)
    • 4 平衡二叉树的验证
  • 三、平衡二叉树的效率分析

一、AVL树的概念

二叉排序树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
为了避免树的高度增长过快,降低二叉排序树的性能,规定在插入和删除结点时,要保证任意结点的左、右子树高度差的绝对值不超过1,将这样的二叉树称为平衡二叉树,也称AVL树。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)在这里插入图片描述

二、AVL树的实现

1、AVL树的定义

AVL树结点的定义:

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;		// 使用三叉链方便后续处理,但要记得维护pair<K, V> _kv;					// 保存键值对int _bf;						// 平衡因子
};

2. 平衡二叉树的插入

2.1 按照二叉排序树的方式插入并更新平衡因子

AVL树就是在二叉排序树的基础上加上了平衡因子,因此AVL树也可以看成是二叉排序树。那么AVL树的插入过程可以分为两步:
(1) 按照二叉排序树的方法插入新结点
(2) 调整结点的平衡因子

bool Insert(const pair<K, V>& kv)
{// 先按照二叉排序树的方法进行结点插入if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while(cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;// 新结点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否// 破坏了AVL树的平衡性while (parent){/*cur插入后,parent的平衡因子一定需要调整,在插入之前,parent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可*/if (parent->_left == cur){--parent->_bf;}else{++parent->_bf;}/*此时:parent的平衡因子可能有三种情况:0,正负1, 正负21. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此时以parent为根的树的高度增加,需要继续向上更新3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/if (0 == parent->_bf){break;}else if (1 == parent->_bf || -1 == parent->_bf){cur = cur->_parent;parent = parent->_parent;}else if (2 == parent->_bf || -2 == parent->_bf){// 旋转处理}else{// 如果平衡因子不是以上几种情况,说明代码逻辑错误assert(false);}}return true;
}

2.2 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:LL平衡旋转(右旋),RR平衡旋转(左旋),LR平衡旋转(先左旋后右旋),RL平衡旋转(先右旋后左旋)

2.2.1 新节点插入较高左子树的左侧(LL平衡旋转)

在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。

在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
    如果是根节点,旋转完成后,要更新根节点
    如果是子树,可能是某个节点的左子树,也可能是右子树
void RotateR(Node* parent)
{// subL:parent的左孩子// subLR:parent的左孩子的右孩子,注意:该点可能不存在Node* subL = parent->_left;Node* subLR = subL->_right;subL->_right = parent;parent->_left = subLR;Node* ppnode = parent->_parent;		// 记录parent的父结点,用于连接新的子树parent->_parent = subL;if (subLR){subLR->_parent = parent;}if (ppnode == nullptr){_root = subL;_root->_parent = nullptr;}else {if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}// 根据调整后的结构更新部分节点的平衡因子subL->_bf = parent->_bf = 0;
}
2.2.2 新节点插入较高右子树的右侧(RR平衡旋转)

在这里插入图片描述
具体实现参考右旋即可。

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;subR->_left = parent;parent->_right = subRL;Node* ppnode = parent->_parent;		// 记录parent的父结点parent->_parent = subR;if (subRL){subRL->_parent = parent;}if (ppnode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}parent->_bf = subR->_bf = 0;
}
2.2.3 新节点插入较高左子树的右侧(LR平衡旋转)

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

void RotateLR(Node* parent)
{// subL:parent的左孩子// subLR:parent的左孩子的右孩子,注意:该点可能不存在Node* subL = parent->_left;Node* subLR = subL->_right;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (1 == bf){subL->_bf = -1;}else if (-1 == bf){parent->_bf = 1;}
}
2.2.4 新节点插入较高右子树的左侧(RL平衡旋转)

在这里插入图片描述
参考右左双旋。

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (1 == bf){parent->_bf = -1;}else if (-1 == bf){subR->_bf = 1;}
}
2.2.5 总结

假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑:

  1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR
    当subR的平衡因子为1时,执行左单旋
    当subR的平衡因子为-1时,执行右左双旋
  2. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为subL
    当subL的平衡因子为-1是,执行右单旋
    当subL的平衡因子为1时,执行左右双旋

旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。

3 平衡二叉树的删除(了解即可)

因为AVL树也是二叉排序树,可按照二叉排序树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
平衡二叉树删除操作的具体步骤:

  1. 先按照二叉排序树的方式删除结点
  2. 一路向上找到最小不平衡子树,找不到就结束
  3. 找最小不平衡子树下,最高的儿子和孙子
  4. 根据孙子的位置,调整平衡
    • 孙子在LL:右单旋
    • 孙子在RR:左单旋
    • 孙子在LR:先左旋再右旋
    • 孙子再RL:先右旋再左旋
  5. 如果不平衡向上传导,继续第二步
    • 对最小不平衡子树的旋转可能导致树变矮,从而导致上层祖先不平衡

4 平衡二叉树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    • 节点的平衡因子是否计算正确
// 求二叉树的高度
int _Height(Node* root)
{if (root == nullptr){return 0;}int leftH = _Height(root->_left);int rightH = _Height(root->_right);return leftH > rightH ? leftH + 1 : rightH + 1;
}
// 验证平衡树
bool _Isbalance(Node* root)
{if (root == nullptr){return true;}int leftH = _Height(root->_left);int rightH = _Height(root->_right);if (rightH - leftH != root->_bf){cout << root->_kv.first << "结点平衡因子异常" << endl;return false;}return rightH - leftH < 2&& _Isbalance(root->_left)&& _Isbalance(root->_right);
}

三、平衡二叉树的效率分析

在平衡二叉树上进行查找的过程与二叉排序树相同。因此,在查找过程中,进行关键字的比较次数不超过树的深度。假设以 n h n_h nh表示深度为h的平衡二叉树中含有的最少结点数。 n 0 = 0 , n 1 = 1 , n 2 = 2 n_0=0,n_1=1,n_2=2 n0=0,n1=1,n2=2,并且有 n h = n h − 2 + n h − 1 + 1 n_h=n_{h-2}+n_{h-1}+1 nh=nh2+nh1+1含有n个结点的平衡二叉树的最大深度为 O ( l o g 2 n ) O(log_2n) O(log2n),因此平均查找效率为 O ( l o g 2 n ) O(log_2n) O(log2n)
但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

这篇关于【C++】平衡二叉树(AVL树)的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084218

相关文章

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单