主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备

2024-06-22 09:04

本文主要是介绍主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备

1. 简介

ResNet 是近年来最受欢迎的深度卷积神经网络架构之一,它以其优异的性能和鲁棒性而著称。ResNet50 和 ResNet101 是 ResNet 家族中最常用的两个模型,它们分别具有 50 层和 101 层残差块。

YOLOv5 和 YOLOv7 是目前流行的实时目标检测框架,它们以其快速、准确的检测性能而著称。然而,YOLOv5/v7 的默认主干网络通常是轻量级的,例如 Darknet53 或 CSPDarknet53,这可能会导致模型精度略逊于其他更复杂的模型。

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络可以显著提高模型的精度,但同时也增加了模型的计算量。

2. 原理详解

ResNet 的核心思想是通过引入残差连接来解决深度卷积神经网络的梯度消失问题。残差连接可以将输入特征直接传递到输出特征,从而使梯度更容易流过网络。

ResNet 的基本结构如下图所示:

​编辑Opens in a new window​编辑www.researchgate.net

ResNet basic structure

ResNet50 和 ResNet101 的主要区别在于它们残差块的数量。ResNet50 具有 4 个阶段,每个阶段包含 3 个或 4 个残差块。ResNet101 具有 5 个阶段,每个阶段包含 3 个或 4 个残差块。

3. 应用场景解释

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络具有以下优势:

  • 提高模型精度: ResNet50/ResNet101 在 ImageNet 数据集上取得了 76.1% 和 82.1% 的 Top-1 准确率,显著高于 YOLOv5/v7 默认主干网络的精度。
  • 扩展模型应用场景: ResNet50/ResNet101 可以应用于更复杂的场景,例如医学图像分析、遥感图像分析等。

4. 算法实现

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络的具体步骤如下:

  1. 下载 ResNet50/ResNet101 预训练权重: 从 PyTorch 官方网站下载 ResNet50/ResNet101 预训练权重。
  2. 修改 YOLOv5/v7 代码: 修改 YOLOv5/v7 代码,将原有的骨干网络替换为 ResNet50/ResNet101。
  3. 训练模型: 如果需要,可以对模型进行微调以提高性能。

5. 完整代码实现

import torch
import torch.nn as nn
from torchvision.models import resnet50, resnet101class ResNetBackbone(nn.Module):def __init__(self, pretrained=True):super(ResNetBackbone, self).__init__()if pretrained:self.resnet = resnet50(pretrained=True)else:self.resnet = resnet50()self.layer1 = self.resnet.conv1self.layer2 = self.resnet.layer1self.layer3 = self.resnet.layer2self.layer4 = self.resnet.layer3def forward(self, x):x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)return xdef get_resnet_backbone(pretrained=True):return ResNetBackbone(pretrained=pretrained)def get_backbone(name, **kwargs):"""Get a backbone by name."""if name == 'resnet50':return get_resnet_backbone(**kwargs)elif name == 'resnet101':return get_resnet_backbone(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))

 

6. 部署测试搭建实现

将 ResNet50/ResNet101 作为主干网络的 YOLOv5/v7 模型可以部署在各种平台上,包括:

  • CPU: ResNet50
        return get_resnet_backbone(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))

Python

import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_urlclass Darknet(nn.Module):def __init__(self, pretrained=False, cfg='yolov5s.yaml'):super().__init__()if pretrained:print(f"Loading YOLOv5 {cfg} pretrained model")self.model = load_state_dict_from_url(f"https://github.com/ultralytics/yolov5/blob/master/models/{cfg}",strict=True,)else:print(f"Creating YOLOv5 {cfg} model")self.model = torch.hub.load("ultralytics/yolov5", cfg, pretrained=False)def forward(self, x):return self.model(x)def get_backbone(name, **kwargs):"""Get a backbone by name."""if name == 'darknet53':return Darknet(**kwargs)elif name == 'cspdarknet53':return CSPDarknet(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))def get_model(cfg, pretrained=False, backbone='darknet53'):"""Create a YOLOv5 model."""backbone = get_backbone(backbone, pretrained=pretrained)model = Model(backbone, cfg)return model

 

YOLOv7 完整代码实现

import torch
import torch.nn as nn
from ultralytics.models.common import ConvBNFuseclass Darknet(nn.Module):def __init__(self, pretrained=False, cfg='yolov7.yaml'):super().__init__()if pretrained:print(f"Loading YOLOv7 {cfg} pretrained model")self.model = load_state_dict_from_url(f"https://github.com/ultralytics/yolov7/blob/master/models/{cfg}",strict=True,)else:print(f"Creating YOLOv7 {cfg} model")self.model = torch.hub.load("ultralytics/yolov7", cfg, pretrained=False)def forward(self, x):return self.model(x)def get_backbone(name, **kwargs):"""Get a backbone by name."""if name == 'cspdarknet53':return CSPDarknet(**kwargs)elif name == 'cspdarknet53_v2':return CSPDarknetV2(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))def get_model(cfg, pretrained=False, backbone='cspdarknet53'):"""Create a YOLOv7 model."""backbone = get_backbone(backbone, pretrained=pretrained)model = Model(backbone, cfg)return model

 

HGNetv2 完整代码实现

import paddle
import paddle.nn as nn
from ppcv.modeling import backbonesclass HGNetv2(nn.Layer):def __init__(self, channels=[64, 128, 256, 512, 1024]):super(HGNetv2, self).__init__()self.stages = nn.Sequential(_hgnet_stage(channels[0], name='stage1'),_hgnet_stage(channels[1], name='stage2'),_hgnet_stage(channels[2], name='stage3'),_hgnet_stage(channels[3], name='stage4'),_hgnet_stage(channels[4], name='stage5'),)def forward(self, x):return self.stages(x)def _hgnet_stage(filters, name):return nn.Sequential(_hgnet_block(filters, name=name + '_block1'),_hgnet_block(filters, name=name + '_block2'),_hgnet_block(filters, name=name + '_block3'),)

6. 部署测试搭建实现

将 ResNet50/ResNet101 作为主干网络的 YOLOv5/v7 模型可以部署在各种平台上,包括:

  • CPU: ResNet50/ResNet101 的推理速度较慢,在 CPU 上部署可能会比较慢。
  • GPU: 在 GPU 上部署 ResNet50/ResNet101 可以获得更高的性能。
  • 服务器: ResNet50/ResNet101 可以部署在服务器上,用于处理大规模的目标检测任务。

部署测试搭建的具体步骤取决于所使用的平台和硬件。以下是一些通用的步骤:

  1. 安装依赖库: 安装 PyTorch、YOLOv5/v7 等必要的库。
  2. 下载模型权重: 下载训练好的 ResNet50/ResNet101 YOLOv5/v7 模型权重。
  3. 转换模型格式: 如果需要,将模型权重转换为目标平台的格式。
  4. 部署模型: 将模型部署到目标平台上。
  5. 测试模型: 测试模型的性能和精度。

7. 文献材料链接

  • Deep Residual Learning for Image Recognition
  • YOLOv5: An Enhanced Version of YOLOv3
  • PP-LCNet: An Efficient Convolutional Neural Network for Image Classification

8. 应用示例产品

将 ResNet50/ResNet101 作为主干网络的 YOLOv5/v7 模型已经应用于各种产品和场景中,例如:

  • 智能安防: ResNet50/ResNet101 可以用于智能安防系统,进行实时的人脸识别、物体识别等。
  • 自动驾驶: ResNet50/ResNet101 可以用于自动驾驶系统,进行障碍物检测、车道线识别等。
  • 医学图像分析: ResNet50/ResNet101 可以用于医学图像分析,进行病灶检测、器官分割等。

9. 总结

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络可以显著提高模型的精度,但同时也增加了模型的计算量。

10. 影响

ResNet 的出现对深度卷积神经网络架构设计产生了深远的影响,它证明了通过引入残差连接可以有效地提高模型的性能和鲁棒性。

11. 未来扩展

未来,可以继续探索更有效的 ResNet 变体,并将其应用于更多类型的模型和任务中。

 

这篇关于主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083850

相关文章

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

电脑不小心删除的文件怎么恢复?4个必备恢复方法!

“刚刚在对电脑里的某些垃圾文件进行清理时,我一不小心误删了比较重要的数据。这些误删的数据还有机会恢复吗?希望大家帮帮我,非常感谢!” 在这个数字化飞速发展的时代,电脑早已成为我们日常生活和工作中不可或缺的一部分。然而,就像生活中的小插曲一样,有时我们可能会在不经意间犯下一些小错误,比如不小心删除了重要的文件。 当那份文件消失在眼前,仿佛被时间吞噬,我们不禁会心生焦虑。但别担心,就像每个问题

十五.各设计模式总结与对比

1.各设计模式总结与对比 1.1.课程目标 1、 简要分析GoF 23种设计模式和设计原则,做整体认知。 2、 剖析Spirng的编程思想,启发思维,为之后深入学习Spring做铺垫。 3、 了解各设计模式之间的关联,解决设计模式混淆的问题。 1.2.内容定位 1、 掌握设计模式的"道" ,而不只是"术" 2、 道可道非常道,滴水石穿非一日之功,做好长期修炼的准备。 3、 不要为了

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

常用MQ消息中间件Kafka、ZeroMQ和RabbitMQ对比及RabbitMQ详解

1、概述   在现代的分布式系统和实时数据处理领域,消息中间件扮演着关键的角色,用于解决应用程序之间的通信和数据传递的挑战。在众多的消息中间件解决方案中,Kafka、ZeroMQ和RabbitMQ 是备受关注和广泛应用的代表性系统。它们各自具有独特的特点和优势,适用于不同的应用场景和需求。   Kafka 是一个高性能、可扩展的分布式消息队列系统,被设计用于处理大规模的数据流和实时数据传输。它

工程文档CAD转换必备!在 Java 中将 DWG 转换为 JPG

Aspose.CAD 是一个独立的类库,以加强Java应用程序处理和渲染CAD图纸,而不需要AutoCAD或任何其他渲染工作流程。该CAD类库允许将DWG, DWT, DWF, DWFX, IFC, PLT, DGN, OBJ, STL, IGES, CFF2文件、布局和图层高质量地转换为PDF和光栅图像格式。 Aspose API支持流行文件格式处理,并允许将各类文档导出或转换为固定布局文件格

微服务中RPC的强类型检查与HTTP的弱类型对比

在微服务架构中,服务间的通信是一个至关重要的环节。其中,远程过程调用(RPC)和HTTP是两种最常见的通信方式。虽然它们都能实现服务间的数据交换,但在类型检查方面,RPC的强类型检查和HTTP的弱类型之间有着显著的差异。本文将深入探讨这两种通信方式在类型检查方面的优缺点,以及它们对微服务架构的影响。 一、RPC的强类型检查 RPC的强类型检查是其核心优势之一。在RPC通信中,客户端和服务端都使

高性能并行计算华为云实验五:

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建PageRank源码 3.2 makefile的创建和编译 3.3 主机配置文件建立与运行监测 四、实验结果与分析 4.1 采用默认的节点数量及迭代次数进行测试 4.2 分析并行化下节点数量与耗时的变化规律 4.3 分析迭代次数与耗时的变化规律 五、实验思考与总结 5.1 实验思考 5.2 实验总结 E