主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备

2024-06-22 09:04

本文主要是介绍主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备

1. 简介

ResNet 是近年来最受欢迎的深度卷积神经网络架构之一,它以其优异的性能和鲁棒性而著称。ResNet50 和 ResNet101 是 ResNet 家族中最常用的两个模型,它们分别具有 50 层和 101 层残差块。

YOLOv5 和 YOLOv7 是目前流行的实时目标检测框架,它们以其快速、准确的检测性能而著称。然而,YOLOv5/v7 的默认主干网络通常是轻量级的,例如 Darknet53 或 CSPDarknet53,这可能会导致模型精度略逊于其他更复杂的模型。

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络可以显著提高模型的精度,但同时也增加了模型的计算量。

2. 原理详解

ResNet 的核心思想是通过引入残差连接来解决深度卷积神经网络的梯度消失问题。残差连接可以将输入特征直接传递到输出特征,从而使梯度更容易流过网络。

ResNet 的基本结构如下图所示:

​编辑Opens in a new window​编辑www.researchgate.net

ResNet basic structure

ResNet50 和 ResNet101 的主要区别在于它们残差块的数量。ResNet50 具有 4 个阶段,每个阶段包含 3 个或 4 个残差块。ResNet101 具有 5 个阶段,每个阶段包含 3 个或 4 个残差块。

3. 应用场景解释

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络具有以下优势:

  • 提高模型精度: ResNet50/ResNet101 在 ImageNet 数据集上取得了 76.1% 和 82.1% 的 Top-1 准确率,显著高于 YOLOv5/v7 默认主干网络的精度。
  • 扩展模型应用场景: ResNet50/ResNet101 可以应用于更复杂的场景,例如医学图像分析、遥感图像分析等。

4. 算法实现

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络的具体步骤如下:

  1. 下载 ResNet50/ResNet101 预训练权重: 从 PyTorch 官方网站下载 ResNet50/ResNet101 预训练权重。
  2. 修改 YOLOv5/v7 代码: 修改 YOLOv5/v7 代码,将原有的骨干网络替换为 ResNet50/ResNet101。
  3. 训练模型: 如果需要,可以对模型进行微调以提高性能。

5. 完整代码实现

import torch
import torch.nn as nn
from torchvision.models import resnet50, resnet101class ResNetBackbone(nn.Module):def __init__(self, pretrained=True):super(ResNetBackbone, self).__init__()if pretrained:self.resnet = resnet50(pretrained=True)else:self.resnet = resnet50()self.layer1 = self.resnet.conv1self.layer2 = self.resnet.layer1self.layer3 = self.resnet.layer2self.layer4 = self.resnet.layer3def forward(self, x):x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)return xdef get_resnet_backbone(pretrained=True):return ResNetBackbone(pretrained=pretrained)def get_backbone(name, **kwargs):"""Get a backbone by name."""if name == 'resnet50':return get_resnet_backbone(**kwargs)elif name == 'resnet101':return get_resnet_backbone(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))

 

6. 部署测试搭建实现

将 ResNet50/ResNet101 作为主干网络的 YOLOv5/v7 模型可以部署在各种平台上,包括:

  • CPU: ResNet50
        return get_resnet_backbone(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))

Python

import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_urlclass Darknet(nn.Module):def __init__(self, pretrained=False, cfg='yolov5s.yaml'):super().__init__()if pretrained:print(f"Loading YOLOv5 {cfg} pretrained model")self.model = load_state_dict_from_url(f"https://github.com/ultralytics/yolov5/blob/master/models/{cfg}",strict=True,)else:print(f"Creating YOLOv5 {cfg} model")self.model = torch.hub.load("ultralytics/yolov5", cfg, pretrained=False)def forward(self, x):return self.model(x)def get_backbone(name, **kwargs):"""Get a backbone by name."""if name == 'darknet53':return Darknet(**kwargs)elif name == 'cspdarknet53':return CSPDarknet(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))def get_model(cfg, pretrained=False, backbone='darknet53'):"""Create a YOLOv5 model."""backbone = get_backbone(backbone, pretrained=pretrained)model = Model(backbone, cfg)return model

 

YOLOv7 完整代码实现

import torch
import torch.nn as nn
from ultralytics.models.common import ConvBNFuseclass Darknet(nn.Module):def __init__(self, pretrained=False, cfg='yolov7.yaml'):super().__init__()if pretrained:print(f"Loading YOLOv7 {cfg} pretrained model")self.model = load_state_dict_from_url(f"https://github.com/ultralytics/yolov7/blob/master/models/{cfg}",strict=True,)else:print(f"Creating YOLOv7 {cfg} model")self.model = torch.hub.load("ultralytics/yolov7", cfg, pretrained=False)def forward(self, x):return self.model(x)def get_backbone(name, **kwargs):"""Get a backbone by name."""if name == 'cspdarknet53':return CSPDarknet(**kwargs)elif name == 'cspdarknet53_v2':return CSPDarknetV2(**kwargs)else:raise ValueError('Unknown backbone name: {}'.format(name))def get_model(cfg, pretrained=False, backbone='cspdarknet53'):"""Create a YOLOv7 model."""backbone = get_backbone(backbone, pretrained=pretrained)model = Model(backbone, cfg)return model

 

HGNetv2 完整代码实现

import paddle
import paddle.nn as nn
from ppcv.modeling import backbonesclass HGNetv2(nn.Layer):def __init__(self, channels=[64, 128, 256, 512, 1024]):super(HGNetv2, self).__init__()self.stages = nn.Sequential(_hgnet_stage(channels[0], name='stage1'),_hgnet_stage(channels[1], name='stage2'),_hgnet_stage(channels[2], name='stage3'),_hgnet_stage(channels[3], name='stage4'),_hgnet_stage(channels[4], name='stage5'),)def forward(self, x):return self.stages(x)def _hgnet_stage(filters, name):return nn.Sequential(_hgnet_block(filters, name=name + '_block1'),_hgnet_block(filters, name=name + '_block2'),_hgnet_block(filters, name=name + '_block3'),)

6. 部署测试搭建实现

将 ResNet50/ResNet101 作为主干网络的 YOLOv5/v7 模型可以部署在各种平台上,包括:

  • CPU: ResNet50/ResNet101 的推理速度较慢,在 CPU 上部署可能会比较慢。
  • GPU: 在 GPU 上部署 ResNet50/ResNet101 可以获得更高的性能。
  • 服务器: ResNet50/ResNet101 可以部署在服务器上,用于处理大规模的目标检测任务。

部署测试搭建的具体步骤取决于所使用的平台和硬件。以下是一些通用的步骤:

  1. 安装依赖库: 安装 PyTorch、YOLOv5/v7 等必要的库。
  2. 下载模型权重: 下载训练好的 ResNet50/ResNet101 YOLOv5/v7 模型权重。
  3. 转换模型格式: 如果需要,将模型权重转换为目标平台的格式。
  4. 部署模型: 将模型部署到目标平台上。
  5. 测试模型: 测试模型的性能和精度。

7. 文献材料链接

  • Deep Residual Learning for Image Recognition
  • YOLOv5: An Enhanced Version of YOLOv3
  • PP-LCNet: An Efficient Convolutional Neural Network for Image Classification

8. 应用示例产品

将 ResNet50/ResNet101 作为主干网络的 YOLOv5/v7 模型已经应用于各种产品和场景中,例如:

  • 智能安防: ResNet50/ResNet101 可以用于智能安防系统,进行实时的人脸识别、物体识别等。
  • 自动驾驶: ResNet50/ResNet101 可以用于自动驾驶系统,进行障碍物检测、车道线识别等。
  • 医学图像分析: ResNet50/ResNet101 可以用于医学图像分析,进行病灶检测、器官分割等。

9. 总结

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络可以显著提高模型的精度,但同时也增加了模型的计算量。

10. 影响

ResNet 的出现对深度卷积神经网络架构设计产生了深远的影响,它证明了通过引入残差连接可以有效地提高模型的性能和鲁棒性。

11. 未来扩展

未来,可以继续探索更有效的 ResNet 变体,并将其应用于更多类型的模型和任务中。

 

这篇关于主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083850

相关文章

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解