STM32通过SPI软件读写W25Q64

2024-06-22 07:04
文章标签 stm32 spi w25q64 读写 软件

本文主要是介绍STM32通过SPI软件读写W25Q64,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

1. W25Q64

2. 硬件电路

3. W25Q64框架图

4. 软件/硬件波形对比

5. 代码实现

5.1 MyI2C.c

5.2 MyI2C.h

5.3 W25Q64.c

5.4 W25Q64.h

5.5 W25Q64_Ins.h

5.6 main.c


1. W25Q64

对于SPI通信和W25Q64的详细解析可以看下面这篇文章

STM32单片机SPI通信详解-CSDN博客

对于STM32通过SPI硬件读写W25Q64的代码,可以看下面这篇文章

STM32通过SPI硬件读写W25Q64-CSDN博客

W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景

存储介质:Nor Flash(闪存)

时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

存储容量(24位地址):

  W25Q40:    4Mbit / 512KByte

  W25Q80:    8Mbit / 1MByte

  W25Q16:    16Mbit / 2MByte

  W25Q32:    32Mbit / 4MByte

  W25Q64:    64Mbit / 8MByte

  W25Q128:  128Mbit / 16MByte

  W25Q256:  256Mbit / 32MByte

地址设计

  • 地址位数:指用于寻址的二进制位数。在计算机系统中,每个内存单元都有一个唯一的地址,通过地址可以访问和引用内存中的数据或指令。
  • 地址总线:用于地址传输的总线。W25Q64 的 24 位地址总线意味着它可以访问 2^24 个地址,即 16,777,216 个字节(16MB)的空间。
  • 地址位数与存储容量:地址位数越多,能寻址的存储空间越大。例如,8 位地址可以寻址 256 个字节,16 位地址可以寻址 65,536 个字节(64KB)。

W25Q64 的存储空间

  • 存储容量:W25Q64 具体的存储容量为 64Mbit,即 8MB,但其地址总线的设计可以支持更大的寻址空间。
  • 数据组织:存储器通常按字节组织,每个字节有唯一的地址。W25Q64 可以通过 24 位地址总线访问每个字节,这使得数据读写操作更加灵活和高效。

2. 硬件电路

引脚功能

VCC、GND

电源(2.7~3.6V)

CS(SS)

SPI片选

CLK(SCK)

SPI时钟

DI(MOSI)

SPI主机输出从机输入

DO(MISO)

SPI主机输入从机输出

WP

写保护

HOLD

数据保持

WP(Write Protect):写保护

WP 引脚用于实现硬件写保护功能。WP 引脚为低电平时,写保护有效,无法进行写操作;WP 引脚为高电平时,可以进行写操作。

HOLD:数据保持

HOLD 引脚为低电平时,芯片进入保持状态。当在进行正常的读写操作时,如果需要中断 SPI 通信以操作其他设备,可以将 HOLD 引脚置为低电平。此时,芯片会保持当前状态但释放总线控制权。这样可以在不中断当前操作的前提下,使用 SPI 总线与其他设备通信。操作完毕后,将 HOLD 引脚置为高电平,芯片将恢复并继续之前的操作。这个功能允许在不终止总线操作的情况下,实现 SPI 总线的中断处理。

3. W25Q64框架图

状态寄存器的 BUSY 和 WEL(Write Enable Latch)

BUSY:忙碌位

  • 功能:当设备正在执行写操作,例如页编程、扇区擦除、块擦除或整片擦除时,BUSY 位会被置为 1。这表示设备正在忙碌,不能接受新的写操作命令。此期间,任何尝试进一步指令的操作都会被忽略。
  • 状态变化:在写状态寄存器指令结束后,BUSY 位清零,表示设备已经准备好接受新指令。

WEL:写使能锁存位

  • 功能:在执行写使能指令后,WEL 位会被置为 1,表示芯片可以进行写入操作。当设备处于写失能状态时,WEL 位清零,表示不能进行写入操作。

什么情况下处于写失能状态

上电初始化

  • 默认状态:当芯片上电后,默认处于写失能状态,WEL 位为 0。

执行写入操作后

  • 写入指令结束:包括写使能指令、页编程、扇区擦除、块擦除等操作,在这些操作完成后,WEL 位会自动清零。这意味着每次执行写入操作后,设备自动进入写失能状态,不需要手动进行写失能操作。

操作顺序

  • 写使能:在进行任何写入操作前,必须先执行写使能指令,将 WEL 位置为 1。
  • 写入指令:执行写入指令后,WEL 位会被清零,确保安全性和数据完整性。每次写使能只对随后的单次写操作有效,保证每次写入前都需要显式地使能写入操作。

​​​​​​​

4. 软件/硬件波形对比

​​​​​​​

硬件数据波形变化紧贴SCK边沿 软件数据变化在边沿后有些延迟。

I2C:SCL低电平期间数据变化,高电平期间数据采样 SPI:SCK下降沿数据移出,上升沿数据移入。 两者最终波形的表现形式都是一样的,无论是下降沿变化还是低电平期间变化,它们都 是一个意思,都可以作为数据变化的时刻。

5. 代码实现

软件SPI读写W25Q64

对主机而言:时钟、主机输出、片选都是输出引脚为推挽输出,主机输入是输入引脚为浮空或者上拉

硬件与软件的区别

  • 硬件操作:SS(Slave Select)下降沿和数据移出是同时发生的,包括后续的SCK(Serial Clock)下降沿和数据移出也是同步进行的。
  • 软件操作:先发生SS下降沿或SCK下降沿,触发数据移出,然后在SCK上升沿移入数据。

数据交换过程

  1. SS下降沿:在SS下降沿之后,主机和从机同时开始移出数据。

    • 主机:移出最高位数据到MOSI(Master Out Slave In)。
    • 从机:移出最高位数据到MISO(Master In Slave Out),MISO的数据变化由从机控制,主机不需要干预。
  2. 掩码使用:通过掩码逐位提取数据进行操作,不会改变原始数据,数据可以重复使用。

    • 第一步:写MOSI,发送ByteSend的最高位。
    • 第二步:SCK上升沿触发移入数据。从机会在SCK上升沿自动读取MOSI的数据,主机则读取MISO的数据,接收从机的最高位。
    • 第三步:SCK下降沿触发移出下一位数据。在SCK下降沿之后,主机移出B6位数据,然后进入循环,SCK上升沿触发主机接收从机次高位,再SCK下降沿移出下一位,循环进行直到完成字节交换。

程序步骤

  1. 写MOSI:发送ByteSend的最高位数据。
  2. SCK上升沿:主机和从机同时移入数据,主机读取MISO的数据。此时,从机会自动读取MOSI的数据。
  3. SCK下降沿:触发主机和从机移出下一位数据。

在循环过程中

  • SCK上升沿:主机读取从机次高位数据。
  • SCK下降沿:移出下一位数据。

在函数结束时,将SCK置为0,表示时序结束。

具体步骤和时序图解释

  1. SS下降沿:主从机同时开始数据交换。
  2. 第一步:主机通过MOSI发送最高位数据。
  3. 第二步:SCK上升沿触发主从机同时读取数据,主机读取MISO上的数据。
  4. 第三步:SCK下降沿触发主从机移出下一位数据。

此过程循环,直到所有位的数据交换完成。函数结束时,将SCK置为0,表示一个字节的数据交换完成。

5.1 MyI2C.c

#include "stm32f10x.h"                  // Device header/*引脚配置层*//*** 函    数:SPI写SS引脚电平* 参    数:BitValue 协议层传入的当前需要写入SS的电平,范围0~1* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SS为低电平,当BitValue为1时,需要置SS为高电平*/
void MySPI_W_SS(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);		//根据BitValue,设置SS引脚的电平
}/*** 函    数:SPI写SCK引脚电平* 参    数:BitValue 协议层传入的当前需要写入SCK的电平,范围0~1* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SCK为低电平,当BitValue为1时,需要置SCK为高电平*/
void MySPI_W_SCK(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)BitValue);		//根据BitValue,设置SCK引脚的电平
}/*** 函    数:SPI写MOSI引脚电平* 参    数:BitValue 协议层传入的当前需要写入MOSI的电平,范围0~0xFF* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置MOSI为低电平,当BitValue非0时,需要置MOSI为高电平*/
void MySPI_W_MOSI(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)BitValue);		//根据BitValue,设置MOSI引脚的电平,BitValue要实现非0即1的特性
}/*** 函    数:I2C读MISO引脚电平* 返 回 值:协议层需要得到的当前MISO的电平,范围0~1* 注意事项:此函数需要用户实现内容,当前MISO为低电平时,返回0,当前MISO为高电平时,返回1*/
uint8_t MySPI_R_MISO(void)
{return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);			//读取MISO电平并返回
}/*** 函    数:SPI初始化* 注意事项:此函数需要用户实现内容,实现SS、SCK、MOSI和MISO引脚的初始化*/
void MySPI_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA4、PA5和PA7引脚初始化为推挽输出GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA6引脚初始化为上拉输入/*设置默认电平*/MySPI_W_SS(1);											//SS默认高电平MySPI_W_SCK(0);											//SCK默认低电平
}/*协议层*///SPI起始
void MySPI_Start(void)
{MySPI_W_SS(0);				//拉低SS,开始时序
}//SPI终止
void MySPI_Stop(void)
{MySPI_W_SS(1);				//拉高SS,终止时序
}/*** 函    数:SPI交换传输一个字节,使用SPI模式0* 参    数:ByteSend 要发送的一个字节* 返 回 值:接收的一个字节*/
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{uint8_t i, ByteReceive = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到for (i = 0; i < 8; i ++)						//循环8次,依次交换每一位数据{MySPI_W_MOSI(ByteSend & (0x80 >> i));		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);								//拉低SCK,下降沿移入数据}return ByteReceive;								//返回接收到的一个字节数据
}

5.2 MyI2C.h

#ifndef __MYSPI_H
#define __MYSPI_Hvoid MySPI_Init(void);
void MySPI_Start(void);
void MySPI_Stop(void);
uint8_t MySPI_SwapByte(uint8_t ByteSend);#endif

5.3 W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"//W25Q64初始化
void W25Q64_Init(void)
{MySPI_Init();					//先初始化底层的SPI
}/*** 函    数:MPU6050读取ID号* 参    数:MID 工厂ID,使用输出参数的形式返回* 参    数:DID 设备ID,使用输出参数的形式返回*/
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_JEDEC_ID);			//交换发送读取ID的指令*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收MID,通过输出参数返回*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收DID高8位*DID <<= 8;									//高8位移到高位*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//或上交换接收DID的低8位,通过输出参数返回MySPI_Stop();								//SPI终止
}//W25Q64写使能
void W25Q64_WriteEnable(void)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_WRITE_ENABLE);		//交换发送写使能的指令MySPI_Stop();								//SPI终止
}//W25Q64等待忙
void W25Q64_WaitBusy(void)
{uint32_t Timeout;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);				//交换发送读状态寄存器1的指令Timeout = 100000;							//给定超时计数时间while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)	//循环等待忙标志位{Timeout --;								//等待时,计数值自减if (Timeout == 0)						//自减到0后,等待超时{/*超时的错误处理代码,可以添加到此处*/break;								//跳出等待,不等了}}MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64页编程* 参    数:Address 页编程的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray	用于写入数据的数组* 参    数:Count 要写入数据的数量,范围:0~256* 注意事项:写入的地址范围不能跨页*/
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{uint16_t i;W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_PAGE_PROGRAM);		//交换发送页编程的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{MySPI_SwapByte(DataArray[i]);			//依次在起始地址后写入数据}MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64扇区擦除(4KB)* 参    数:Address 指定扇区的地址,范围:0x000000~0x7FFFFF*/
void W25Q64_SectorErase(uint32_t Address)
{W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);	//交换发送扇区擦除的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64读取数据* 参    数:Address 读取数据的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray 用于接收读取数据的数组,通过输出参数返回* 参    数:Count 要读取数据的数量,范围:0~0x800000*/
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{uint32_t i;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_DATA);			//交换发送读取数据的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//依次在起始地址后读取数据}MySPI_Stop();								//SPI终止
}

5.4 W25Q64.h

#ifndef __W25Q64_H
#define __W25Q64_Hvoid W25Q64_Init(void);
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID);
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count);#endif

5.5 W25Q64_Ins.h

#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3#define W25Q64_DUMMY_BYTE							0xFF#endif

5.6 main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "W25Q64.h"uint8_t MID;							//定义用于存放MID号的变量
uint16_t DID;							//定义用于存放DID号的变量uint8_t ArrayWrite[] = {0x01, 0x02, 0x03, 0x04};	//定义要写入数据的测试数组
uint8_t ArrayRead[4];								//定义要读取数据的测试数组int main(void)
{/*模块初始化*/OLED_Init();						//OLED初始化W25Q64_Init();						//W25Q64初始化/*显示静态字符串*/OLED_ShowString(1, 1, "MID:   DID:");OLED_ShowString(2, 1, "W:");OLED_ShowString(3, 1, "R:");/*显示ID号*/W25Q64_ReadID(&MID, &DID);			//获取W25Q64的ID号OLED_ShowHexNum(1, 5, MID, 2);		//显示MIDOLED_ShowHexNum(1, 12, DID, 4);		//显示DID/*W25Q64功能函数测试*/W25Q64_SectorErase(0x000000);					//扇区擦除W25Q64_PageProgram(0x000000, ArrayWrite, 4);	//将写入数据的测试数组写入到W25Q64中W25Q64_ReadData(0x000000, ArrayRead, 4);		//读取刚写入的测试数据到读取数据的测试数组中/*显示数据*/OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);		//显示写入数据的测试数组OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);OLED_ShowHexNum(3, 3, ArrayRead[0], 2);			//显示读取数据的测试数组OLED_ShowHexNum(3, 6, ArrayRead[1], 2);OLED_ShowHexNum(3, 9, ArrayRead[2], 2);OLED_ShowHexNum(3, 12, ArrayRead[3], 2);while (1){}
}

​​​​​​​

这篇关于STM32通过SPI软件读写W25Q64的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083609

相关文章

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

电子盖章怎么做_电子盖章软件

使用e-章宝(易友EU3000智能盖章软件)进行电子盖章的步骤如下: 一、准备阶段 软件获取: 访问e-章宝(易友EU3000智能盖章软件)的官方网站或相关渠道,下载并安装软件。账户注册与登录: 首次使用需注册账户,并根据指引完成注册流程。注册完成后,使用用户名和密码登录软件。 二、电子盖章操作 文档导入: 在e-章宝软件中,点击“添加”按钮,导入待盖章的PDF文件。支持批量导入多个文件,

小红书商家电话采集软件使用指南

使用小红书商家电话采集软件可以提高商家电话的采集效率,以下是使用指南及附带代码。 步骤一:安装Python和相关库 首先,确保你的电脑已经安装了Python运行环境(建议安装Python3版本)。安装完成后,同样需要安装一些相关的库,如requests、beautifulsoup4等。在命令行窗口中输入以下命令进行安装: pip install requestspip install bea

大型网站架构演化(五)——数据库读写分离

网站在使用缓存后,使绝大部分数据读操作访问都可以不通过数据库就能完成,但是仍有一部分读操作(缓存访问不命中、缓存过期)和全部的写操作需要访问数据库,在网站的用户达到一定规模后,数据库因为负载压力过大而成为网站的瓶颈。      目前豆粉的主流数据库都提供主从热备功能,通过配置两台数据库主从关系,可以将一台数据库服务器的数据更新同步到另一台服务器上。网站利用数据库的这一功能,

STM32单片机PWR电源控制详解

文章目录 1. PWR概述 2. 电源结构框图 3. 上电复位和掉电复位 4. 可编程电压监测器 5. 低功耗模式 6. 模式选择 6.1 睡眠模式 6.2 停止模式 6.3 待机模式 7. 代码示例 1. PWR概述 PWR(Power Control)电源控制,负责管理STM32内部的电源供电部分,可以实现可编程电压监测器和低功耗模式的功能。 可编程电压监测器

服务器监控:运维行业的核心保障与第三方监控软件的选择

随着信息技术的飞速发展,企业IT架构日益复杂,服务器作为整个IT系统的核心,其稳定性和性能对业务的连续性至关重要。在运维行业中,服务器监控作为保障服务器稳定运行的关键环节,已经受到了越来越多企业的重视。本文将探讨服务器监控的重要性、挑战以及选择第三方监控软件的原因,并推荐一款优秀的服务器监控软件——监控易。 一、服务器监控的重要性     服务器监控是指对服务器硬件、操作系统、应用程序

docx转doc工具(软件)

word中的docx转成doc格式软件下载: http://pan.baidu.com/s/1ntsi0yt <script>window._bd_share_config={"common":{"bdSnsKey":{},"bdText":"","bdMini":"2","bdMiniList":false,"bdPic":"","bdStyle":"0","bdSize

python3GUI--ktv点歌软件By:PyQt5(附下载地址)

文章目录 一.前言二.展示1.启动2.搜索2.服务1.首页2.天气预报3.酒水饮料4.酒水饮料2 3.服务4.灯光5.调音6.排行榜7.分类点歌9.歌手点歌10.歌手个人页 三.心得体会1.关于代码2.关于设计3.关于打包 四.总结 文件大小:33.13M https://wwt.lanzoul.com/iikRv22iqmpg 如果安装后打不开,多半是权限问题,请使用管理

【续2】linux C语言 文件描述符 读写地址分析

记录时间:2014-10-24 10:35 记录原因:一直对文件指针读写存在疑惑,导致经常性的操作文件时,结果不理想。原来一直是对文件被打开后,对文件流指针的读写位置没有弄清楚。 文件在打开后,任何一个对文件的操作都会改变文件流指针的位置,所以在对文件进行操作时,应从如下两点考虑: 1、文件是不是第一次打开:可以确认文件指针的确却位置; 2、检测文件打开方式,特殊注

linux C语言 文件描述符 读写地址分析

1、fwrite 和 fread对文件操作之后,文件位置指针已经移动到被操作的位置; 2、如果不是在fread或fwrite操作后的位置读、写文件内容,那么必须重新定位文件指针位置,此时可以使用 rewind、fseek函数; 3、rewind(FILE *stream):将文件指针直接移动到文件起始位置; 4、fseek(FILE *stream, long offset