数据挖掘系列笔记(2):机器学习的应用实例

2024-06-22 05:58

本文主要是介绍数据挖掘系列笔记(2):机器学习的应用实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习的应用领域非常广泛,而且随着VLSI技术的发展和大规模并行计算的推广,机器学习机器相关的大数据领域,再次成为研究的热点。

1. 学习关联性

从样本的空间中学习各种事件之间的关联性。以超市购物为例,X代表客户购买尿布的事件,Y代表客户购买奶粉的事件,则P(Y|X)代表客户在购买了尿布时,又购买了奶粉的概率。机器学习的一个任务就是,从一个大的样本空间之内,学习事件之间的关联性,以指导商业或其他领域的决策。

2. 监督学习

针对未知的系统,从已有的输入和输出关系中推算出系统的模型,用以预测新的输入下系统最可能的输出。监督学习有两种:分类和回归。两者的主要区别在于,分类是针对离散的系统,而回归是针对连续的系统。

2.1 分类

分类的一个例子是在银行系统中的应用,需要区分高风险客户和低风险客户。从银行的历史数据的,建立客户的个人信息(职业、年龄、收入等)和借贷风险的之间的关系,也即把依据个人信息,把客户划分为不同风险等级的类别。这样,当面对新客户的时候,就根据机器学习所建立的模型,预测出他的风险等级。因为个人信息和风险等级都可以视为离散值,所以属于监督学习中的分类,通常使用决策树的方法。

2.2 回归

回归与分类相似,只是面向连续的系统,所以通常用函数来拟合。例如,需要通过学习获得二手车的报价系统,则需要建立一个从二手汽车的特征到出售价格的函数。

3 非监督学习

非监督学习往往不是用来推算系统的模型,而是从样本中发现特征。例如从历史交易信息中发现频繁交易的客户,并总结其特征。从一组图片中找出频繁出现的局部特征,从蛋白质结构中发现反复出现的氨基酸序列。

4. 增强学习

此类学习中,其需要的结果是获得一种策略,也就是达到某个目标的动作序列。常见的就是博弈,例如国际象棋或者围棋。一旦有了能够学习如何玩好游戏的算法,就可以将这些算法用在具有更显著经济效益的领域。


这篇关于数据挖掘系列笔记(2):机器学习的应用实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083485

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#