本文主要是介绍GOT和PLT原理简析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
GOT(Global Offset Table)和PLT(Procedure Linkage Table)是Linux系统下面ELF格式的可执行文件中,用于定位全局变量和过程的数据信息。以C程序为例,一个程序可能会包含多个文件,可执行文件的生成过程通常由以下几步组成。
1. 编译器把每个.c文件编译成汇编(.s)文件。
2. 汇编器把每个(.s)文件转换为(.o)文件。
3. 链接器把多个.o文件链接为一个可执行文件(.out)。
.s文件是汇编文件的后缀,一般对此种类型文件的关注不多,不再讨论,重点在.o文件和.out文件。
.c文件中通常有对变量和过程的使用,若是变量和过程定义在当前文件中,则可以使用相对偏移寻址来调用。若是定义在其他文件中,则在编译当前文件时无法获取其地址;若是定义在动态库中,则直到程序被加载、运行时,才能够确定。本文通过《深入理解计算机系统》中讲动态链接一章中的例子,通过gdb的调试,研究调用动态库中函数时的重定位过程。
1. 动态库程序。
addvec.c
void addvec(int *x, int *y, int *z, int n){int i;for(i = 0; i < n; i++)z[i] = x[i] + y[i];
}
通过命令gcc -fPIC -shared addvec.c -o libvec.so可以把上面的程序转换为动态库libvec.so。2. 调用动态库的主程序。
main.c
#include <stdio.h>int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];int main(){addvec(x, y, z, 2);printf("z = [%d %d]\n", z[0], z[1]);addvec(x, y, z, 2);printf("z = [%d %d]\n", z[0], z[1]);return 0;
}
通过命令gcc main.c -o main -L./ -lvec生成可执行文件main。-L./ -lvec表示链接当前目录下的动态链接库libvec.so。
使用命令objdump -d -s > main.dmp反汇编main。
反汇编生成的文件中,主要有三个段与对动态库函数addvec的调用有关:.got.plt,.plt和代码段.text。
代码段容易理解,就是程序语句所对应的指令组成的。.got.plt中保存的是数据,为每个动态调用保存一个条目,条目的内容应该是对动态库函数的调用所跳转到的目标地址。由于Linux采用了延迟绑定技术,可执行文件中got.plt中的地址并不是目标地址,而是动态链接器(ld-linux)中的地址。在程序执行的第一次调用时,ld-linux把.got.plt的地址填写正确,之后的调用,就可以使用.got.plt中的目标地址了。.plt段中的内容则是实现跳转操作的代码片段。
代码段:
.got.plt
.plt
源代码中,对于函数的addvec的两次调用,命令为
callq 400580 <addvec@plt>
调用的目标地址是.plt段中的addvec@plt函数。该函数由三条语句组成,其作用分别为:
1. 跳转到地址600af8,这个地址位于.got.plt中。从图中可以看到got.plt起始于600ad0,终止于600b08(600b00 + 8)。并且600af8的内容为86054000,按照小端的读法,其内容为00400586,实际就是下一条(第2条)指令。
2. 第二条指令把当前函数的id(0x2)压入栈中。
3. 第三条指令,跳转到400550,这之后的工作可以视为系统在运行时填充地址600af8的过程。也就是在延迟绑定机制下,第一次执行时,600af8的内容是400586,第二次及之后的内容就会修改为addvec函数的实际地址,可以通过gdb来验证。
可以看到,第一次调用addvec的时候,地址600af8中的内容是0x0000000000400586,第二次调用的时候就变成了0x00007ffff7bd95e5,是addvec的实际入口地址,与预期的相同。
这篇关于GOT和PLT原理简析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!