Studying-代码随想录训练营day16| 513找到左下角的值、112.路径总和、106从中序与后序遍历序列构造二叉树

本文主要是介绍Studying-代码随想录训练营day16| 513找到左下角的值、112.路径总和、106从中序与后序遍历序列构造二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十六天,二叉树part03💪💪💪,编程语言:C++

目录

513找到左下角的值

112.路径总和

113.路径总和II

106从中序与后序遍历序列构造二叉树 

105.从前序与中序遍历序列构造二叉树 

总结 


513找到左下角的值

文档讲解:代码随想录找到左下角的值

视频讲解:手撕找到左下角的值

题目:

学习:注意是找到最底层最左边的值,而不是找到最左边的左节点。两者是有很大差别的,对于第二个示例就能看出,并且最底层最左边的值也未必是左节点,如果示例2中4有一个右节点,那最底层最左边的值就是4的右节点了。

代码:因此本题采用层序遍历最好理解,每次从左到右遍历,记入每次遍历的第一个节点,就是该层最左边的节点,直到找到最后一层。

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode*> que;if(root != nullptr) que.push(root);int result;while(!que.empty()) {int size = que.size();result = que.front()->val;while(size--) {TreeNode* node = que.front();que.pop();if(node->left) que.push(node->left);if(node->right) que.push(node->right); }}return result;}
};

代码:本题还可以采用递归遍历的方式,使用前序,中序,后序都可以,这三种遍历方式都保证了先遍历左子树,再遍历右子树。注意每次更新result,只在进入到一个更大的深度,这样能保证记录的是最左边的值。

class Solution {
public://设置两个全局变量,保存最大深度和答案值,当然本题也可以将其放入函数当中,使用引用的方式int maxDepth = INT_MIN;int result;void traversal(TreeNode* cur, int depth) {if(cur->left == nullptr && cur->right == nullptr) {if (depth > maxDepth) {maxDepth = depth;result = cur->val;}}//注意必须得先遍历左边,左优先遍历,能够保证在找到最后一层的时候,赋值最左边的节点if(cur->left) traversal(cur->left, depth + 1);if(cur->right) traversal(cur->right, depth + 1);}int findBottomLeftValue(TreeNode* root) {traversal(root, 0);return result;}
};

112.路径总和

文档讲解:代码随想录路径总和

视频讲解:手撕路径总和

题目:

学习:

  1. 依据本题的意思,我们在遍历过程中,需要遍历到叶子节点才终止。注意本题不适合进行值的大小判断,因为本题的节点数值和目标值都是有可能是正,有可能是负的,因此不好设置大小判断条件。
  2. 本题可以采取前序遍历的方式,同时在遍历的过程中,不是累加各节点数值,而是通过对目标值的相减,来不断逼近目标值,这样更加的直观,且能减少不必要的变量。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:bool traversal(TreeNode* root, int count) {//减掉当前节点的值count -= root->val;//确定终止条件,遍历到叶子结点if(root->left == nullptr && root->right == nullptr && count != 0) return false;if(root->left == nullptr && root->right == nullptr && count == 0) return true;//确定单层递归逻辑,同时保证遍历过程中root不为nullptr//count非引用方式,因此为自动进行回溯if (root->left) {if(traversal(root->left, count)) return true;} if (root->right) {if(traversal(root->right, count)) return true;}return false;}bool hasPathSum(TreeNode* root, int targetSum) {if (root == nullptr) return false;return traversal(root, targetSum);}
};

113.路径总和II

题目:

学习:

  1. 本题与上题不同的在于,要找到所有的数值之和等于目标值的路径。因此我们需要遍历所有的节点,同时要持续记录数值和路径两个变量。数值通过上题,我们知道可以通过目标值不断做减法来进行记录,路径则需要我们建立一个数组来进行保存。
  2. 本题还有一个值得注意的地方,我们在递归过程中如果需要不停改变一个变量,一般采用的是引用的方式。但其实也能采用全局变量的方式,将变量写在函数外,全局变量在递归中同样会不断的被改变。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public://构造两个全局变量,存储路径和结果,取代参数引用vector<vector<int>> result;vector<int> path;//遍历树的节点,因为结果都储存在两个vector数组中,因此不需要返回值void traversal (TreeNode* root, int sum) {//确定终止条件//找到叶子节点的时候进行判断if(root->left == nullptr && root->right == nullptr && sum == 0) {result.push_back(path);return;}//如果sum!=0 直接返回if(root->left == nullptr && root->right == nullptr) return;//确定单层递归逻辑if(root->left) {path.push_back(root->left->val);traversal(root->left, sum - root->left->val);//对路径进行回溯path.pop_back();}if(root->right) {path.push_back(root->right->val);traversal(root->right, sum - root->right->val);path.pop_back();}return;}vector<vector<int>> pathSum(TreeNode* root, int targetSum) {if(root == nullptr) return result;path.push_back(root->val);traversal(root, targetSum - root->val);return result;}
};

106从中序与后序遍历序列构造二叉树 

文档讲解:代码随想录从中序与后序遍历系列构造二叉树

视频讲解:手撕从中序与后序遍历序列构造二叉树

题目:

学习: 本题与KMP算法一样,都是数据结构中经典的例题之一。

  1. 依据后序遍历左右中的特点我们可以知道,最后一个节点一定是根节点。而根据中序遍历左中右的特点,当我们知道谁是根节点之后,在中序遍历中根节点左边的部分就为根节点的左子树,右边的部分就为根节点的右子树。
  2. 接着我们重复上述过程,当找到根节点的左子树和右子树有哪些节点后,我们在后序遍历中也能够把除最后一个节点(根节点)以外的点,分为左子树部分和右子树部分。相对的对于这两个部分而言,由于后序遍历左右中的特点,最后一个节点就为它们各自的根节点(整棵树的中间节点)。之后再从中序遍历中依次找到根节点的左右部分即可循环下去,直到确定所有节点的位置。
  3. 如果是在纸上进行作答的话,我们根据一次次循环就很容易能够把节点加上去。但是在代码中我们要十分注意递归循环的过程,不仅要设置递归三部曲,还要划分好每次循环过程中的左子树部分和右子树部分。

本题的代码过程可以分为六步:

  1. 如果数组大小为零,说明是空节点,返回
  2. 如果不为空,取后序遍历数组的最后一个元素作为根节点元素。
  3. 找到后序遍历数组最后一个元素在中序遍历数组的位置,作为左右子树切割点。
  4. 切割中序遍历数组,切成中序左数组和中序右数组。
  5. 切割后序遍历数组,注意这里分割的方法是通过第4部分割出的两个数组来进行分割的,因为中序遍历数组中,中序左数组的个数(左子树)一定和后序遍历数组中后序左数组(左子树)的个数是一样的,右子树同理。(其实我们在用纸笔解答的时候,也是通过中序遍历数组分割后的结果,来推导后序遍历数组中的左右子树部分)
  6. 递归处理左区间和右区间。

代码:

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};

代码:本题也可以通过设置下标来设置左右子树区间

 

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
private:// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin =  postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;// 左闭右开的原则return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};

105.从前序与中序遍历序列构造二叉树 

题目:

学习:本题和上一题一样,只不过后序换为前序遍历后,根节点的寻找变为了找前序遍历数组的第一个节点作为根节点,剩下的同样是依据需要划分不同左右子树区间,进行递归。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割前序数组// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)int leftPreorderBegin =  preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);int rightPreorderEnd = preorderEnd;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;}public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if (inorder.size() == 0 || preorder.size() == 0) return NULL;// 参数坚持左闭右开的原则return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());}
};

注:本题还能采用迭代的方式,等我二刷试试。

总结 

今天题目虽然不多,但是难度都很大,需要反复学习理解。

  1. 左下角的值要避免成为找最左边的左叶子节点的值。
  2. 路径总和要注意对路径中数值的处理,以及路径总和II中对每一条路径的保存和回溯,都需要注意。
  3. 从中序与后序遍历构造二叉树和从前序与中序遍历构造二叉树,理解上虽然没什么问题,但是代码书写上难度很大,还需要多加练习。

这篇关于Studying-代码随想录训练营day16| 513找到左下角的值、112.路径总和、106从中序与后序遍历序列构造二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083255

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.