FFmpeg源码:AV_RB32宏定义分析

2024-06-22 03:04
文章标签 分析 源码 ffmpeg 定义 av rb32

本文主要是介绍FFmpeg源码:AV_RB32宏定义分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、AV_RB32宏定义的作用

AV_RB32是FFmpeg源码中经常出现的一个宏,其定义如下:

#ifndef AV_RB32
#   define AV_RB32(p)    AV_RB(32, p)
#endif

该宏定义有多层。把它简化为函数,其函数声明可以等价于:

uint32_t AV_RB32(uint8_t *data);

该函数作用是:按照大端模式 读取形参data指向的缓冲区的前四个字节,并返回。

形参data:输入型参数。指向某个缓冲区。

返回值:按照大端模式 读取到的 “形参data指向的缓冲区的前四个字节”。

二、AV_RB32宏定义的内部实现

 FFmpeg源码目录下的libavutil/intreadwrite.h 中存在如下宏定义:

#ifndef AV_RB32
#   define AV_RB32(p)    AV_RB(32, p)
#endif#ifndef AV_RN32
#   define AV_RN32(p) AV_RN(32, p)
#endif#   define AV_RB(s, p)    av_bswap##s(AV_RN##s(p))#   define AV_RN(s, p) (((const union unaligned_##s *) (p))->l)union unaligned_32 { uint32_t l; } __attribute__((packed)) av_alias;

libavutil/attributes.h 中存在如下宏定义:

#ifdef __GNUC__
#    define AV_GCC_VERSION_AT_LEAST(x,y) (__GNUC__ > (x) || __GNUC__ == (x) && __GNUC_MINOR__ >= (y))
#    define AV_GCC_VERSION_AT_MOST(x,y)  (__GNUC__ < (x) || __GNUC__ == (x) && __GNUC_MINOR__ <= (y))
#else
#    define AV_GCC_VERSION_AT_LEAST(x,y) 0
#    define AV_GCC_VERSION_AT_MOST(x,y)  0
#endif#define av_alias __attribute__((may_alias))#ifndef av_always_inline
#if AV_GCC_VERSION_AT_LEAST(3,1)
#    define av_always_inline __attribute__((always_inline)) inline
#elif defined(_MSC_VER)
#    define av_always_inline __forceinline
#else
#    define av_always_inline inline
#endif
#endif#if AV_GCC_VERSION_AT_LEAST(2,6) || defined(__clang__)
#    define av_const __attribute__((const))
#else
#    define av_const
#endif

所以 #   define AV_RB32(p)    AV_RB(32, p)  等价于 =>

#   define AV_RB32(p)  av_bswap32(AV_RN(32, p))  等价于 =>

#   define AV_RB32(p)  av_bswap32((((const union unaligned_32 *) (p))->l))

libavutil/bswap.h 中存在如下宏定义:

#define AV_BSWAP16C(x) (((x) << 8 & 0xff00)  | ((x) >> 8 & 0x00ff))
#define AV_BSWAP32C(x) (AV_BSWAP16C(x) << 16 | AV_BSWAP16C((x) >> 16))#ifndef av_bswap32
static av_always_inline av_const uint32_t av_bswap32(uint32_t x)
{return AV_BSWAP32C(x);
}
#endif

所以AV_BSWAP32C(x)  等价于 =>
(AV_BSWAP16C(x) << 16 | AV_BSWAP16C((x) >> 16))  等价于 =>

( (((x) << 8 & 0xff00)  | ((x) >> 8 & 0x00ff)) << 16 | ((((x) >> 16) << 8 & 0xff00)  | (((x) >> 16) >> 8 & 0x00ff)) )

所以

static av_always_inline av_const uint32_t av_bswap32(uint32_t x)
{return AV_BSWAP32C(x);
}

  等价于 =>

static __attribute__((always_inline)) inline __attribute__((const)) uint32_t av_bswap32(uint32_t x)
{return ( (((x) << 8 & 0xff00)  | ((x) >> 8 & 0x00ff)) << 16 | ((((x) >> 16) << 8 & 0xff00)  | (((x) >> 16) >> 8 & 0x00ff)) );
}

所以 AV_RB32(p);     等价于 =>

av_bswap32((((const union unaligned_32 *) (p))->l)); 等价于 =>

( ((((((const union unaligned_32 *) (p))->l)) << 8 & 0xff00)  | (((((const union unaligned_32 *) (p))->l)) >> 8 & 0x00ff)) << 16 | (((((((const union unaligned_32 *) (p))->l)) >> 16) << 8 & 0xff00)  | ((((((const union unaligned_32 *) (p))->l)) >> 16) >> 8 & 0x00ff)) );

三、编写测试例子,测试AV_RB32

main.c :

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>#ifdef __GNUC__
#    define AV_GCC_VERSION_AT_LEAST(x,y) (__GNUC__ > (x) || __GNUC__ == (x) && __GNUC_MINOR__ >= (y))
#    define AV_GCC_VERSION_AT_MOST(x,y)  (__GNUC__ < (x) || __GNUC__ == (x) && __GNUC_MINOR__ <= (y))
#else
#    define AV_GCC_VERSION_AT_LEAST(x,y) 0
#    define AV_GCC_VERSION_AT_MOST(x,y)  0
#endif#define av_alias __attribute__((may_alias))#ifndef av_always_inline
#if AV_GCC_VERSION_AT_LEAST(3,1)
#    define av_always_inline __attribute__((always_inline)) inline
#elif defined(_MSC_VER)
#    define av_always_inline __forceinline
#else
#    define av_always_inline inline
#endif
#endif#if AV_GCC_VERSION_AT_LEAST(2,6) || defined(__clang__)
#    define av_const __attribute__((const))
#else
#    define av_const
#endif#define AV_BSWAP16C(x) (((x) << 8 & 0xff00)  | ((x) >> 8 & 0x00ff))
#define AV_BSWAP32C(x) (AV_BSWAP16C(x) << 16 | AV_BSWAP16C((x) >> 16))#ifndef av_bswap32
static av_always_inline av_const uint32_t av_bswap32(uint32_t x)
{return AV_BSWAP32C(x);
}
#endifunion unaligned_32 { uint32_t l; } __attribute__((packed)) av_alias;#   define AV_RN(s, p) (((const union unaligned_##s *) (p))->l)
#   define AV_RB(s, p)    av_bswap##s(AV_RN##s(p))#ifndef AV_RB32
#   define AV_RB32(p)    AV_RB(32, p)
#endif#ifndef AV_RN32
#   define AV_RN32(p) AV_RN(32, p)
#endifint main()
{uint8_t *data = (uint8_t *)malloc(sizeof(uint8_t) * 8);if(data){data[0] = 0x12;data[1] = 0x34;data[2] = 0x56;data[3] = 0x78;data[4] = 0x9A;data[5] = 0xBC;data[6] = 0xDE;data[7] = 0xF0;printf("%lu\n", AV_RB32(data));printf("%lu\n", AV_RB32(data + 4));free(data);data = NULL;}return 0;
}

Linux平台下使用gcc编译(我用的是CentOS 7.5,通过10.2.1版本的gcc编译)。输出为:

由于AV_RB32是按照大端模式读取。而data[0] = 0x12,data[1] = 0x34,data[2] = 0x56,data[3] = 0x78; 所以AV_RB32(data) 的值为0x12345678,换算成10进制就是305419896。

data[4] = 0x9A;data[5] = 0xBC;data[6] = 0xDE;data[7] = 0xF0;所以AV_RB32(data + 4) 的值为0x9ABCDEF0,换算成10进制就是2596069104。

AV_RB32(data) 将宏展开,实际就是:

( ((((((const union unaligned_32 *) (data))->l)) << 8 & 0xff00)  | (((((const union unaligned_32 *) (data))->l)) >> 8 & 0x00ff)) << 16 | (((((((const union unaligned_32 *) (data))->l)) >> 16) << 8 & 0xff00)  | ((((((const union unaligned_32 *) (data))->l)) >> 16) >> 8 & 0x00ff)) )

四、参考文章

《大小端模式》

这篇关于FFmpeg源码:AV_RB32宏定义分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083104

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S