【python】OpenCV——Color Correction

2024-06-21 23:12
文章标签 python opencv color correction

本文主要是介绍【python】OpenCV——Color Correction,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

  • cv2.aruco 介绍
  • imutils.perspective.four_point_transform 介绍
  • skimage.exposure.match_histograms 介绍
  • 牛刀小试
  • 遇到的问题

参考学习来自 OpenCV基础(18)使用 OpenCV 和 Python 进行自动色彩校正

cv2.aruco 介绍

在这里插入图片描述

一、cv2.aruco模块概述

cv2.aruco 是 OpenCV 库中用于 ArUco 标记检测和识别的模块。ArUco 是一种基于 OpenCV 的二进制标记系统,用于多种计算机视觉应用,如姿态估计、相机校准、机器人导航和增强现实等。

以下是关于 cv2.aruco 的中文文档概要,按照参考文章中的信息进行整理和归纳:

一、ArUco 标记概述

ArUco 标记是带有黑色边框的二进制正方形图像,内部主体为白色,标记根据特定的编码变化。
ArUco 标记由 ArUco 字典、标记大小和标记 ID 组成。例如,一个 4x4_100 字典由 100 个标记组成,4x4 标记大小意味着标记由 25 位组成,每个标记将有一个唯一的 ID。

二、主要函数与参数

(1)cv2.aruco.detectMarkers()

  • 功能:检测图像中的 ArUco 标记。
  • 参数:
    • 输入图像:包含 ArUco 标记的图像。
    • 字典:用于搜索的 ArUco 字典。
    • 参数(可选):检测参数,如 cv2.aruco.DetectorParameters()。
  • 返回值:
    • 标记角:检测到的标记的四个角的位置坐标。
    • 标记 ID:检测到的标记的 ID。
    • 拒绝标记(可选):未满足检测条件的标记信息。

(2)cv2.aruco.drawDetectedMarkers()

  • 功能:在图像上绘制检测到的 ArUco 标记。

  • 参数:

    • 输入图像:包含 ArUco 标记的图像。
    • 标记角:检测到的标记的四个角的位置坐标。
    • 边界颜色(可选):绘制标记边界的颜色。
  • 返回值:绘制了标记的图像。

(3)cv2.aruco.getPredefinedDictionary()

  • 功能:获取预定义的 ArUco 字典。

  • 参数:字典类型(如 aruco.DICT_ARUCO_ORIGINAL)。

  • 返回值:预定义的 ArUco 字典。

三、检测过程与参数调整

阈值化:检测的第一步是对输入图像进行阈值化。这可以通过调整 cv2.aruco.DetectorParameters() 中的相关参数来完成,如 adaptiveThreshWinSizeMin、adaptiveThreshWinSizeMax 和 adaptiveThreshWinSizeStep。

角点细化:为了提高角点检测的精度,可以使用 cornerRefinementMethod 和 cornerRefinementWinSize 参数进行角点细化。

四、使用示例

以下是一个简单的示例,演示了如何使用 cv2.aruco 检测和可视化 ArUco 标记:

import cv2  
import cv2.aruco as aruco  # 读取图片  
img = cv2.imread("marker.jpg")  # 创建字典  
dictionary = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL)  # 检测标记  
corners, ids, _ = aruco.detectMarkers(img, dictionary)  # 可视化标记  
img_with_markers = aruco.drawDetectedMarkers(img, corners)  # 显示结果  
cv2.imshow("ArUco detection", img_with_markers)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

五、注意事项

  • 确保已正确安装 OpenCV,并包含 cv2.aruco 模块。

  • 根据具体应用需求选择合适的 ArUco 字典和标记大小。

  • 调整检测参数以优化标记检测性能。

imutils.perspective.four_point_transform 介绍

使用前先安装 pip install imutils

imutils.perspective.four_point_transform 是 OpenCV 图像处理库的一个辅助工具,用于实现透视变换(Perspective Transformation)。透视变换可以将一个图像从一个视角转换到另一个视角,这在图像校正、文档扫描、车牌识别等任务中非常有用。

以下是关于 imutils.perspective.four_point_transform 函数的详细解释和用法:

一、函数定义

imutils.perspective.four_point_transform 函数需要两个主要参数:

  • image:要进行透视变换的原始图像。

  • pts:包含图像中感兴趣区域(ROI)四个顶点的坐标列表。这四个点定义了原始图像中的一个四边形区域,该区域将被变换成一个矩形区域。

二、使用步骤

a. 读取图像
首先,使用 OpenCV 的 cv2.imread() 函数读取要进行透视变换的图像。

b. 确定变换点
然后,需要确定要进行透视变换的 ROI 的四个顶点。这可以通过各种方法实现,如边缘检测、轮廓查找、角点检测等。

c. 调用 four_point_transform 函数
将原始图像和四个顶点的坐标列表传递给 imutils.perspective.four_point_transform 函数。函数将返回一个经过透视变换后的新图像。

d. 显示或保存变换后的图像
使用 OpenCV 的 cv2.imshow() 函数显示变换后的图像,或者使用 cv2.imwrite() 函数将其保存为文件。

三、示例代码

以下是一个简单的示例代码,展示了如何使用 imutils.perspective.four_point_transform 函数进行透视变换:

import cv2  
import numpy as np  
import imutils  # 读取图像  
image = cv2.imread('input.jpg')  # 假设我们已经通过某种方法找到了 ROI 的四个顶点,这里我们直接给出坐标  
pts = np.array([[100, 100], [300, 100], [300, 300], [100, 300]], dtype="float32")  # 进行透视变换  
warped = imutils.perspective.four_point_transform(image, pts)  # 显示变换后的图像  
cv2.imshow("Warped", warped)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

四、注意事项

  • 确保 pts 列表中的坐标点按照正确的顺序排列(通常是左上角、右上角、右下角、左下角)。

  • 透视变换的结果可能会受到原始图像中 ROI 的形状和大小的影响。因此,在实际应用中,可能需要通过调整 ROI 的位置和大小来优化变换结果。

skimage.exposure.match_histograms 介绍

在这里插入图片描述

可参考 【python】OpenCV—Histogram Matching(9.2)

牛刀小试

素材来自于

链接:https://pan.baidu.com/s/1ja5RZUiV5Hyu-Z65JEJWzg 
提取码:123a
# -----------------------------
#   USAGE
# -----------------------------
# python color_correction.py
# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
from imutils.perspective import four_point_transform
from skimage import exposure
import numpy as np
import argparse
import imutils
import cv2
import sys# -----------------------------
#   FUNCTIONS
# -----------------------------
def find_color_card(image, colors, savename=None):# Load the ArUCo dictionary, grab the ArUCo parameters and detect the markers in the input imagearucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_ARUCO_ORIGINAL)arucoParams = cv2.aruco.DetectorParameters_create()(corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)# Plot cornersif savename:image_copy = image.copy()for i in range(len(corners)):  # traverse cornersfor j in range(4):  # traverse coordinatescv2.circle(image_copy, center=(int(corners[i][0][j][0]), int(corners[i][0][j][1])),radius=10, color=colors[i], thickness=-1)cv2.imwrite(savename, image_copy)# Try to extract the coordinates of the color correction cardtry:# Otherwise, this means that the four ArUCo markers have been found and# so continue by flattening the ArUCo IDs listids = ids.flatten()# Extract the top-left markeri = np.squeeze(np.where(ids == 923))  # 3topLeft = np.squeeze(corners[i])[0]  # array([111., 123.], dtype=float32)# Extract the top-right markeri = np.squeeze(np.where(ids == 1001))  # 2topRight = np.squeeze(corners[i])[1]  # array([430., 124.], dtype=float32)# Extract the bottom-right markeri = np.squeeze(np.where(ids == 241))  # 1bottomRight = np.squeeze(corners[i])[2]  # array([427., 516.], dtype=float32)# Extract the bottom left markeri = np.squeeze(np.where(ids == 1007))  # 0bottomLeft = np.squeeze(corners[i])[3]  # array([121., 520.], dtype=float32)# The color correction card could not be found, so gracefully returnexcept:return None# Build the list of reference points and apply a perspective transform to obtain a top-down,# birds-eye-view of the color matching cardcardCoords = np.array([topLeft, topRight, bottomRight, bottomLeft])""" for referencearray([[111., 123.],[430., 124.],[427., 516.],[121., 520.]], dtype=float32)"""card = four_point_transform(image, cardCoords)# Return the color matching card to the calling functionreturn cardif __name__ == "__main__":# colors for cornerscolors = [[0, 0, 255],[0, 125, 255],[0, 255, 255],[0, 255, 0]]# Load the reference image and input images from diskprint("[INFO] Loading images...")ref = cv2.imread("./reference.jpg")  # (4032, 3024, 3)image = cv2.imread("./examples/03.jpg")  # (4032, 3024, 3)# Resize the reference and input imagesref = imutils.resize(ref, width=600)  # (800, 600, 3)image = imutils.resize(image, width=600)  # (800, 600, 3)# Display the reference and input images to the screencv2.imshow("Reference", ref)cv2.imshow("Input", image)# Find the color matching card in each imageprint("[INFO] Finding color matching cards...")refCard = find_color_card(ref, colors, "refCardPlot.jpg")  # (397, 319, 3)imageCard = find_color_card(image, colors, "imageCardPlot.jpg")  # (385, 306, 3)# If the color matching card is not found in either the reference or the input image, gracefully exit the programif refCard is None or imageCard is None:print("[INFO] Could not find color matching cards in both images! Exiting...")sys.exit(0)# Show the color matching card in the reference image and the in the input image respectivelycv2.imshow("Reference Color Card", refCard)cv2.imshow("Input Color Card", imageCard)# cv2.imwrite("reference_color_card.jpg", refCard)# cv2.imwrite("input_color_card.jpg", imageCard)# Apply histogram matching from the color matching card in the reference image# to the color matching card in the input imageprint("[INFO] Matching images...")# imageCard = exposure.match_histograms(imageCard, refCard, multichannel=True)imageCard = exposure.match_histograms(imageCard, refCard, channel_axis=-1)# Show the input color matching card after histogram matchingcv2.imshow("Input Color Card After Matching", imageCard)# cv2.imwrite("input_color_card_after_matching.jpg", imageCard)cv2.waitKey(0)

reference.jpg

在这里插入图片描述
03.jpg

在这里插入图片描述
refCardPlot.jpg

在这里插入图片描述

reference 的 corners

(array([[[120., 486.],[155., 485.],[156., 519.],[121., 520.]]], dtype=float32), 
array([[[393., 482.],[427., 482.],[427., 516.],[393., 516.]]], dtype=float32), 
array([[[395., 124.],[430., 124.],[430., 161.],[395., 161.]]], dtype=float32), 
array([[[111., 123.],[147., 124.],[148., 160.],[111., 160.]]], dtype=float32))

reference 的 ids

array([[1007],[ 241],[1001],[ 923]], dtype=int32)

reference 的 rejected

len(rejected)
76

1007 左下角,红色

241 右下角,橙色

1001 右上角,黄色

923 右下角,绿色

imageCardPlot.jpg

在这里插入图片描述

透视变换 four_point_transform 后

reference_color_card.jpg

在这里插入图片描述

input_color_card.jpg

在这里插入图片描述

input_color_card_after_matching.jpg

在这里插入图片描述

遇到的问题

问题1:AttributeError: module ‘cv2.aruco’ has no attribute ‘Dictionary_get’

解决办法:pip install opencv-contrib-python==4.6.0.66

问题2:TypeError: rescale() got an unexpected keyword argument ‘multichannel‘

解决方法:TypeError: rescale() got an unexpected keyword argument ‘multichannel‘

这篇关于【python】OpenCV——Color Correction的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082604

相关文章

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

Python如何实现 HTTP echo 服务器

《Python如何实现HTTPecho服务器》本文介绍了如何使用Python实现一个简单的HTTPecho服务器,该服务器支持GET和POST请求,并返回JSON格式的响应,GET请求返回请求路... 一个用来做测试的简单的 HTTP echo 服务器。from http.server import HT

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.