Python学习打卡:day12

2024-06-21 23:04
文章标签 python 学习 打卡 day12

本文主要是介绍Python学习打卡:day12,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

day12

笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了

目录

  • day12
    • 92、全国疫情地图构建
      • 数据整理
        • 获取数据
        • 数据整体结构(全国)
        • 省数据结构
        • 获取每个省份的确诊数据
        • 上述代码执行后输出,每个省的确诊数据
      • 国内疫情地图
        • 创建地图
        • 添加数据
        • 设置全局设置,定制分段的视觉映射
        • 绘图
      • 最终结果
    • 93、河南省疫情地图构建
      • 获取河南省各市数据
      • 省数据结构
      • 把各市数据汇总到一个列表中
      • 参考国内疫情地图生成河南省疫情地图
      • 最终显示结果
    • 94、基础柱状图构建
      • 通过Bar构建基础柱状图
      • 反转 x 和 y 轴并使数值标签在右侧
    • 95、基础时间线柱状图
      • 创建时间线
        • 1、
        • 2、设置自动播放
        • 3、设置时间线主题
        • 4、示例代码
        • 5、实现结果
    • 96、动态GDP柱状图绘制
      • 补充知识点:列表的 sort 方法
        • 带名函数形势
        • 匿名 Lambda 形式
      • 正文
        • 处理数据
          • 读取数据,删除第一条数据
          • 将数据转换为字典存储
        • 准备时间线
        • 自动播放和绘图
      • 效果展示

92、全国疫情地图构建

数据整理

获取数据

在这里插入图片描述

数据整体结构(全国)

省数据结构

在这里插入图片描述

获取每个省份的确诊数据
"""
演示全国疫情可视化地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *# 读取数据文件
f = open("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/可视化案例数据/地图数据/疫情.txt","r",encoding="UTF-8"
)
data = f.read()     # 全部数据# 关闭文件
f.close()# 取到各省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data)    # 基础数据字典
# 从字典中取出省份的数据
province_data_list = data_dict["areaTree"][0]["children"]# 组装每个省份和确诊人数为元组,并各个省的数据都封装入列表内
data_list = []      # 绘图所需要的数据列表
for province_data in province_data_list:province_name = province_data["name"]                   # 省份名称province_confirm = province_data["total"]["confirm"]    # 确诊人数# 给列表传参,传入一个元组,元组有两个元素data_list.append((province_name, province_confirm))print(data_list)
上述代码执行后输出,每个省的确诊数据
[('台湾省', 15880), ('江苏省', 1576), ('云南省', 982), ('河南', 1518), ('上海', 2408), ('湖南', 1181), ('湖北', 68286), ('广东', 2978), ('香港', 12039), ('福建', 773), ('浙江', 1417), ('山东', 923), ('四川', 1179), ('天津', 445), ('北京', 1107), ('陕西', 668), ('广西', 289), ('辽宁', 441), ('重庆', 603), ('澳门', 63), ('甘肃', 199), ('山西', 255), ('海南', 190), ('内蒙古', 410), ('吉林', 574), ('黑龙江', 1613), ('宁夏', 77), ('青海', 18), ('江西', 937), ('贵州', 147), ('西藏', 1), ('安徽', 1008), ('河北', 1317), ('新疆', 980)]

国内疫情地图

创建地图

导入模块:

from pyecharts.charts import Map
from pyecharts.options import *

创建地图:

# 创建地图对象
map = Map()
添加数据
# 添加数据
map.add("各省份确诊人数", data_list, "china")
设置全局设置,定制分段的视觉映射
# 设置全局设置,定制分段的视觉映射
map.set_global_opts(title_opts=TitleOpts(title="全国疫情地图"),visualmap_opts=VisualMapOpts(is_show=True,       # 是否显示is_piecewise=True,  # 是否分段pieces=[{"min": 1, "max": 99, "label": "1-99", "color": "#CCFFFF"},{"min": 100, "max": 999, "label": "100-999", "color": "#FFFF99"},{"min": 1000, "max": 4999, "label": "1000-4999", "color": "#FF9966"},{"min": 5000, "max": 9999, "label": "5000-9999", "color": "#FF6666"},{"min": 10000, "max": 99999, "label": "10000-99999", "color": "#CC3333"},{"min": 100000, "label": "100000+", "color": "#990033"},])
)
绘图
# 绘图
map.render("全国疫情地图.html")

最终结果

在这里插入图片描述

93、河南省疫情地图构建

获取河南省各市数据

"""
演示河南省疫情可视化地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *# 读取数据文件
f = open("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/可视化案例数据/地图数据/疫情.txt","r",encoding="UTF-8"
)
data = f.read()     # 全部数据# 关闭文件
f.close()

省数据结构

在这里插入图片描述

把各市数据汇总到一个列表中

# 取到河南省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data)    # 基础数据字典
# 从字典中取出河南省的数据
cities_data = data_dict["areaTree"][0]["children"][3]["children"]# 组装每个省份和确诊人数为元组,并各个省的数据都封装入列表内
data_list = []      # 绘图所需要的数据列表
for city_data in cities_data:city_name = city_data["name"] + "市"city_confirm = city_data["total"]["confirm"]    # 确诊人数# 给列表传参,传入一个元组,元组有两个元素data_list.append((city_name, city_confirm))# 未出现济源市信息,手动添加
data_list.append(("济源市", 5))print(data_list)

参考国内疫情地图生成河南省疫情地图

# 创建地图对象
map = Map()# 添加数据
map.add("河南省疫情分布", data_list, "河南")# 设置全局设置,定制分段的视觉映射
map.set_global_opts(title_opts=TitleOpts(title="河南省疫情地图"),visualmap_opts=VisualMapOpts(is_show=True,       # 是否显示is_piecewise=True,  # 是否分段pieces=[{"min": 1, "max": 99, "label": "1-99", "color": "#CCFFFF"},{"min": 100, "max": 999, "label": "100-999", "color": "#FFFF99"},{"min": 1000, "max": 4999, "label": "1000-4999", "color": "#FF9966"},{"min": 5000, "max": 9999, "label": "5000-9999", "color": "#FF6666"},{"min": 10000, "max": 99999, "label": "10000-99999", "color": "#CC3333"},{"min": 100000, "label": "100000+", "color": "#990033"},])
)# 绘图
map.render("河南省地图.html")

最终显示结果

在这里插入图片描述

94、基础柱状图构建

通过Bar构建基础柱状图

"""
演示基础柱状图的开发
"""
from pyecharts.charts import Bar
from pyecharts.options import LabelOpts
# 使用 Bar 构建基础柱状图
bar = Bar()# 添加 x 轴的数据
bar.add_xaxis(["中国", "美国", "英国"])# 添加 y 轴的数据
bar.add_yaxis("GDP", [30, 20, 10])# 绘图
bar.render("基础柱状图.html")

效果如下:

在这里插入图片描述

反转 x 和 y 轴并使数值标签在右侧

"""
演示基础柱状图的开发
"""
from pyecharts.charts import Bar
from pyecharts.options import LabelOpts
# 使用 Bar 构建基础柱状图
bar = Bar()# 添加 x 轴的数据
bar.add_xaxis(["中国", "美国", "英国"])# 将数值标签从柱状图中间移到柱状图右侧
bar.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position="right"))# 反转 x 轴 和 y 轴
bar.reversal_axis()# 绘图
bar.render("基础柱状图.html")

效果如下:
在这里插入图片描述

95、基础时间线柱状图

创建时间线

Timeline()——时间线

柱状图描述的是分类数据,回答的是每一个分类中『有多少?』这个问题。这是柱状图的主要特点,同时柱状图很难动态的描述一个趋势性的数据。这里 pyecharts 为我们提供了一种解决方案——时间线

如果说一个Bar、Line对象是一张图表的话,时间线就是创建一个一维的 x 轴,轴上每一个点就是一个图表对象。
在这里插入图片描述

1、
from pyecharts.charts import Bar, Timeline
from pyecharts.options import LabelOpts# 使用 Bar 构建基础柱状图
bar1 = Bar()
bar1.add_xaxis(["中国", "美国", "英国"])
bar1.add_yaxis("GDP", [30, 30, 20])
bar1.reversal_axis()bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"])
bar2.add_yaxis("GDP", [50, 50, 50])
bar2.reversal_axis()bar3 = Bar()
bar3.add_xaxis(["中国", "美国", "英国"])
bar3.add_yaxis("GDP", [70, 60, 60])
bar3.reversal_axis()# 构建时间线对象
timeline = Timeline()# 在时间线内添加柱状图对象
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")# 绘图是用时间线对象绘图,而不是 Bar 对象了
timeline.render("基础时间线柱状图.html")
2、设置自动播放
# 自动播放设置
timeline.add_schema(play_interval=1000,         # 自动播放的时间间隔is_timeline_show=True,      # 是否显示时间线is_auto_play=True,          # 是否自动播放is_loop_play=True           # 是否循环播放
)
3、设置时间线主题
# 构建时间线对象
timeline = Timeline({"theme": ThemeType.DARK}
)

在这里插入图片描述

4、示例代码
"""
演示基础柱状图的开发
"""
from pyecharts.charts import Bar, Timeline
from pyecharts.options import LabelOpts
from pyecharts.globals import ThemeType# 使用 Bar 构建基础柱状图
bar1 = Bar()
bar1.add_xaxis(["中国", "美国", "英国"])
bar1.add_yaxis("GDP", [30, 30, 20])
bar1.reversal_axis()bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"])
bar2.add_yaxis("GDP", [50, 50, 50])
bar2.reversal_axis()bar3 = Bar()
bar3.add_xaxis(["中国", "美国", "英国"])
bar3.add_yaxis("GDP", [70, 60, 60])
bar3.reversal_axis()# 构建时间线对象
timeline = Timeline({"theme": ThemeType.DARK}
)# 在时间线内添加柱状图对象
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")# 自动播放设置
timeline.add_schema(play_interval=1000,         # 自动播放的时间间隔is_timeline_show=True,      # 是否显示时间线is_auto_play=True,          # 是否自动播放is_loop_play=True           # 是否循环播放
)# 绘图是用时间线对象绘图,而不是 Bar 对象了
timeline.render("基础时间线柱状图.html")
5、实现结果

在这里插入图片描述

96、动态GDP柱状图绘制

补充知识点:列表的 sort 方法

使用方式:

列表.sort(key=选择排序依据的函数, reverse=True/False)

  • 参数key,是要求传入一个函数,表示将列表的每一个元素都传入函数中,返回排序的依据;
  • 参数reverse,是否反转排序结果,True表示降序,False表示升序。
带名函数形势
# 准备列表
my_list = [["a", 33], ["b", 55], ["c", 11]]# 排序,基于带名函数
def choose_sort_key(element):return element[1]
my_list.sort(key=choose_sort_key, reverse=True)
print(my_list)
匿名 Lambda 形式
# 准备列表
my_list = [["a", 33], ["b", 55], ["c", 11]]# 排序,基于 lambda 匿名函数
my_list.sort(key=lambda element:element[1], reverse=True)print(my_list)

正文

处理数据
读取数据,删除第一条数据
# 读取数据
f = open("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/可视化案例数据/动态柱状图数据/1960-2019全球GDP数据.csv","r",encoding="GB2312"
)
data_lines = f.readlines()# 关闭文件
f.close()# 删除第一行数据
data_lines.pop(0)
将数据转换为字典存储

格式为:{ 年份: [ [国家, gdp], [国家,gdp], ...... ], 年份: [ [国家, gdp], [国家,gdp], ...... ], ...... }

# 将数据变成字典存储,格式为:
# {年份:[[国家: gdp], [国家: gdp], [国家: gdp], ......], 年份:[[国家: gdp], [国家: gdp], [国家: gdp], ......]}
# 先定义一个字典对象
data_dict = {}
for line in data_lines:year = int(line.split(",")[0])          # 年份country = line.split(",")[1]       # 国家gdp = float(line.split(",")[2])         # gdp数据# 如何判断字典里面有没有指定的key?# try块尝试访问字典中的年份键(data_dict[year])并向其追加数据(.append([country, gdp]))。try:data_dict[year].append([country, gdp])# 如果年份键不存在(即第一次遇到这个年份),会抛出KeyError异常。# 在except块中,捕获到KeyError异常后,创建一个新的空列表(data_dict[year] = []),然后再向其中追加数据(.append([country, gdp]))。except KeyError:data_dict[year] = []data_dict[year].append([country, gdp])
准备时间线
# 创建时间线对象
timeline = Timeline({"theme":ThemeType.LIGHT})# 排序年份
sorted_year_list = sorted(data_dict.keys())
for year in sorted_year_list:data_dict[year].sort(key = lambda element: element[1], reverse=True)# 取出本年份前八名的国家year_data = data_dict[year][0:8]x_data = []y_data = []for country_gdp in year_data:x_data.append(country_gdp[0])   # x 轴添加国家y_data.append(country_gdp[1] / 100000000)   # y 轴添加 gdp 数据# 构建柱状图bar = Bar()x_data.reverse()y_data.reverse()bar.add_xaxis(x_data)bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position="right"))# 反转 x 轴和 y轴bar.reversal_axis()# 设置每一年的图表的标题bar.set_global_opts(title_opts=TitleOpts(title=f"{year}年全球前8的GDP数据"))timeline.add(bar, str(year))
自动播放和绘图
# 设置时间线自动播放
timeline.add_schema(play_interval=1000,is_timeline_show=True,is_auto_play=True,is_loop_play=False
)# 绘图
timeline.render("1960~2019全球GDP前8国家.html")

效果展示

在这里插入图片描述

这篇关于Python学习打卡:day12的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082591

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(