[HDU 5889] Barricade (最短路 + 最小割)

2024-06-21 19:38
文章标签 最小 短路 hdu barricade 5889

本文主要是介绍[HDU 5889] Barricade (最短路 + 最小割),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HDU - 5889
给定一张无向图,每条边的长度为 1
要求在 1到 N的最短路上放一些陷阱
使得 1到 N的每条最短路上至少有一个陷阱
其中在某条边上修陷阱有一个代价,求最小代价和

很显然的一个最小割
首先先用 SPFA把最短路求出来,然后依据最短路建图
然后再在新图上跑网络流即可
注意这个流量是有方向的,最短路上的反向边容量应该清零

#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <map>
#include <set>
#include <queue>
#include <bitset>
#include <string>
#include <complex>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define SQR(a) ((a)*(a))
#define PCUT puts("\n----------")const int maxn=1e3+10, maxm=2e4+10;
struct Graph
{int ndn, edn, last[maxn];int u[maxm], v[maxm], w[maxm], nxt[maxm];void init(int _n){ndn=_n; edn=0; MST(last,-1);}void adde(int _u, int _v, int _w){u[edn]=_u; v[edn]=_v; w[edn]=_w;nxt[edn]=last[_u];last[_u]=edn++;}
};struct Dinic
{Graph *G;int S, T, dist[maxn], cur[maxn];int bfs();int dfs(int,int);int solve(Graph*,int,int);
};int N,M;
Graph G;
Dinic din;int dist[maxn];
bool inq[maxn], have[maxm];
void SPFA(int,int);int main()
{#ifdef LOCALfreopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);#endifint T;scanf("%d", &T);for(int ck=1; ck<=T; ck++){scanf("%d%d", &N, &M);G.init(N);for(int i=0,u,v,w; i<M; i++){scanf("%d%d%d", &u, &v, &w);G.adde(u,v,w); G.adde(v,u,w);}SPFA(1,N);int ans = din.solve(&G, 1, N);printf("%d\n", ans);}return 0;
}void SPFA(int S, int T)
{CLR(inq); MST(dist,0x3f); CLR(have);queue<int> que;inq[S] = 1;dist[S] = 0;que.push(S);while(que.size()){int u=que.front(); que.pop();for(int e=G.last[u], v; ~e; e=G.nxt[e]){v = G.v[e];if(dist[v] > dist[u] + 1){dist[v] = dist[u] + 1;if(!inq[v]){inq[v] = 1;que.push(v);}}}inq[u] = 0;}CLR(inq);while(que.size()) que.pop();que.push(T);inq[T] = 1;while(que.size()){int v=que.front(); que.pop();for(int e=G.last[v], u; ~e; e=G.nxt[e]){u = G.v[e];if(dist[u]+1==dist[v]){have[e] = have[e^1] = 1;G.w[e] = 0;if(!inq[u]){que.push(u);inq[u] = 1;}}}}
}int Dinic::solve(Graph *g,int s, int t)
{G=g; S=s; T=t;int res=0;while(bfs()) {for(int i=1; i<=G->ndn; i++) cur[i]=G->last[i]; // cur_init for all node (start from 1)res+=dfs(S,1e9);}return res; 
}int Dinic::bfs()
{MST(dist,-1);dist[S]=0;queue<int> que;que.push(S);while(que.size()){int u=que.front(); que.pop();for(int e=G->last[u]; ~e; e=G->nxt[e]){int v=G->v[e];if(have[e] && dist[v]==-1 && G->w[e] > 0){dist[v] = dist[u] + 1;que.push(v);}}}return ~dist[T];
}int Dinic::dfs(int u,int tmin)
{if(u==T || tmin==0) return tmin;int nflw=0, f;for(int &e=cur[u]; ~e; e=G->nxt[e]){int v=G->v[e];if(dist[u]+1==dist[v] && (f = dfs(v, min(tmin, G->w[e]))) > 0){G->w[e] -= f;G->w[e^1] += f;nflw += f;tmin -= f;if(tmin==0) break;}}return nflw;
}

这篇关于[HDU 5889] Barricade (最短路 + 最小割)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082149

相关文章

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问