本文主要是介绍[HDU 3060] Area2 (简单多边形面积交),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
HDU - 3060
给定两个简单多边形,求他们覆盖的面积
先求出两个简单多边形的面积交
然后用面积和减去面积交
简单多边形面积交的求法就是将多边形分割成若干三角形
然后两组三角形用凸多边形的方法两两求交
#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <map>
#include <set>
#include <queue>
#include <bitset>
#include <string>
#include <complex>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define SQR(a) ((a)*(a))
#define PCUT puts("\n----------")const int maxn=500+10;
const DBL eps=1e-8;
int sgn(DBL x){return x>eps? 1: (x<-eps? -1: 0);}
struct Vector
{DBL x,y;Vector(DBL _x=0, DBL _y=0):x(_x),y(_y){}Vector operator + (const Vector &rhs) const {return Vector(x+rhs.x, y+rhs.y);}Vector operator - (const Vector &rhs) const {return Vector(x-rhs.x, y-rhs.y);}Vector operator * (const DBL &rhs) const {return Vector(x*rhs, y*rhs);}Vector operator / (const DBL &rhs) const {return Vector(x/rhs, y/rhs);}DBL operator * (const Vector &rhs) const {return x*rhs.x + y*rhs.y;}DBL operator ^ (const Vector &rhs) const {return x*rhs.y - rhs.x*y;}int read(){return scanf("%lf%lf", &x, &y);}
};
typedef Vector Point;struct Line
{Point u,v;Line(){}Line(Point _u,Point _v):u(_u),v(_v){}
};
int N,M;
Point A[maxn], B[maxn];
DBL Area(int,Point*);
DBL CPIA(Point*,Point*,int,int);
DBL SPIA(Point*,Point*,int,int);int main()
{#ifdef LOCALfreopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);#endifwhile(~scanf("%d%d", &N, &M)){for(int i=0; i<N; i++) A[i].read();for(int i=0; i<N; i++) B[i].read();printf("%.2f\n", Area(N,A)+Area(M,B)-SPIA(A,B,N,M));}return 0;
}DBL Area(int siz, Point p[])
{DBL res=0;split.for(int i=1; i<siz; i++) res += (p[i-1]^p[i]);res += (p[siz-1]^p[0]);return abs(res*0.5);
}Point GetLineIntSec(Line l1, Line l2)
{DBL a = (l1.v-l1.u)^(l2.u-l1.u), b = (l1.u-l1.v)^(l2.v-l1.v);if(sgn(a+b)==0) return Point(1e9,1e9);return Point((l2.u.x * b + l2.v.x * a) / (a + b), (l2.u.y * b + l2.v.y * a) / (a + b));
}DBL CPIA(Point a[], Point b[], int na, int nb)
{Point p[20], tmp[20]; // na,nb <=20int i, j, tn, sflag, eflag;a[na] = a[0], b[nb] = b[0];memcpy(p,b,sizeof(Point)*(nb + 1));for(i = 0; i < na && nb > 2; i++){sflag = sgn((a[i+1]-a[i])^(p[0]-a[i]));for(j = tn = 0; j < nb; j++, sflag = eflag){if(sflag>=0) tmp[tn++] = p[j];eflag = sgn( (a[i + 1]-a[i])^(p[j + 1]-a[i]));if((sflag ^ eflag) == -2)tmp[tn++] = GetLineIntSec( Line(a[i], a[i + 1]) , Line(p[j], p[j + 1]));}memcpy(p, tmp, sizeof(Point) * tn);nb = tn, p[nb] = p[0];}if(nb < 3) return 0.0;return Area(nb, p);
}DBL SPIA(Point a[], Point b[], int na, int nb)
{int i, j;Point t1[4], t2[4];double res = 0, num1, num2;a[na] = t1[0] = a[0], b[nb] = t2[0] = b[0];for(i = 2; i < na; i++){t1[1] = a[i-1], t1[2] = a[i];num1 = sgn( (t1[1]-t1[0])^(t1[2]-t1[0]));if(num1 < 0) swap(t1[1], t1[2]);for(j = 2; j < nb; j++){t2[1] = b[j - 1], t2[2] = b[j];num2 = sgn((t2[1]-t2[0])^(t2[2]-t2[0]));if(num2 < 0) swap(t2[1], t2[2]);res += CPIA(t1, t2, 3, 3) * num1 * num2;}}return res;
}
这篇关于[HDU 3060] Area2 (简单多边形面积交)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!