使用暴力的方法(循环)实现科赫曲线

2024-06-21 18:58

本文主要是介绍使用暴力的方法(循环)实现科赫曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用暴力的方法画出科赫曲线(循环方法),注释代码如下:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics2D;
import java.awt.Toolkit;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;import javax.swing.JFrame;
import javax.swing.JPanel;
/*** 用暴力方法实现科赫曲线(循环实现)* @author LONG**/
public class Kehe extends JFrame {private Dimension di = null;	//创建Dimension类型的变量来保存屏幕尺寸private Graphics2D gr = null;	//创建Graphics类型变量来保存画布对象private static final long serialVersionUID = 1L;private int[] old_x = new int[2];	//创建初始化x数组用来动态保存原来的坐标private int[] old_y = new int[2];	//创建初始化y数组用来动态保存原来的坐标private int[] new_x = new int[2];	//创建数组来保存现在需要画的x坐标private int[] new_y = new int[2];	//创建数组来保存现在需要画的y坐标private JPanel jp_draw = null;		//声明面板public static void main(String[] args){Kehe ke = new Kehe();ke.showFrame();}public void showFrame(){this.setTitle("科赫曲线");Toolkit tl = Toolkit.getDefaultToolkit();di = tl.getScreenSize();//初始化数组new_x[0] = 0; new_y[0] = di.height*3/4;		new_x[1] = di.width; new_y[1] = di.height*3/4;this.setSize(di.width,di.height);this.setDefaultCloseOperation(3);jp_draw = new JPanel();jp_draw.setPreferredSize(new Dimension(di.width,di.height));jp_draw.setBackground(Color.WHITE);this.setResizable(false);this.add(jp_draw);this.setVisible(true);gr = (Graphics2D)jp_draw.getGraphics();jp_draw.addMouseListener(new MouseAdapter(){public void mousePressed(MouseEvent e){Start();}});}/*** (基于我的暴力画法分析)* 在画之前可以分析一下,科赫曲线,以最简单的思维来看,就是在一条条直线上画正三角形,* 然后再重复前面的过程再画,只是画的时候,直线的位置可能有所不同,因为有水平的直线* 还有倾斜的直线,但是我们们可以看出,这些直线的有规律可循的,总之就是以PI/6的大小* 在变化倾斜度,所以只要我们分清楚是哪一种,就可以计算出坐标,存储在数组中,最后把* 这些点连接起来就可以了。* * @param x1* @param y1* @param x2* @param y2*/public void doSomething(int x1,int y1,int x2,int y2){old_x = new_x;		//将旧的数组指向新的数组old_y = new_y;		//将旧的数组指向新的数组int length = old_x.length;			//得到上一个数组的长度,为计算下一次数组的长度做铺垫new_x = new int[3 * (length - 1) + length];		//扩充新的数组new_y = new int[3 * (length - 1) + length];		//扩充新的数组for(int q = 0; q < old_x.length - 1; q++){	//遍历整个旧的数组得到新的坐标x1 = old_x[q]; y1 = old_y[q];	x2 = old_x[q+1]; y2 = old_y[q+1];if(Math.sqrt(Math.pow(x2 - x1, 2) + Math.pow(y2 - y1, 2)) > 3){//使用collection-based for循环遍历旧的数组,将旧的数组的值放到新数组中int g = 0;for(int n : old_x){		new_x[g] = n;g += 4;}g = 0;for(int n : old_y){new_y[g] = n;g += 4;}for(int i = 0; i < old_x.length - 1; i++){		//循环的次数是旧的数组中保存的边数,然后计算下一次的新增坐标if(old_y[i] == old_y[i + 1]){	//判断说明这条线是水平的,水平的时候再判断一下大小//接着生成这条边上的新的三个点,并且付给新的数组if(old_x[i] < old_x[i + 1]){int x11 = old_x[i] + (old_x[i + 1] - old_x[i])/3;int y11 = old_y[i];int x33 = old_x[i] + 2 * (old_x[i + 1] - old_x[i])/3;int y33 = old_y[i];int x22 = (x11 + x33)/2;int y22 = y11 - (int)((x33 - x11)*Math.sqrt(3)/2);new_x[4 * i + 1] = x11;new_y[4 * i + 1] = y11;new_x[4 * i + 2] = x22;new_y[4 * i + 2] = y22;new_x[4 * i + 3] = x33;new_y[4 * i + 3] = y33;}else{int x11 = old_x[i + 1] + 2 * (old_x[i] - old_x[i + 1])/3;int y11 = old_y[i];int x33 = old_x[i + 1] + (old_x[i] - old_x[i + 1])/3;int y33 = old_y[i];int x22 = (x11 + x33)/2;int y22 = y11 + (int)((x11 - x33)*Math.sqrt(3)/2);new_x[4 * i + 1] = x11;new_y[4 * i + 1] = y11;new_x[4 * i + 2] = x22;new_y[4 * i + 2] = y22;new_x[4 * i + 3] = x33;new_y[4 * i + 3] = y33;}}else if(old_x[i] < old_x[i + 1] && old_y[i] > old_y[i + 1]){int x11 = old_x[i] + (old_x[i + 1] - old_x[i])/3;int y11 = old_y[i + 1] + 2 * (old_y[i] - old_y[i + 1])/3;int x33 = old_x[i] + 2 * (old_x[i + 1] - old_x[i])/3;int y33 = old_y[i + 1] +(old_y[i] - old_y[i + 1])/3;int c_x = (x11 + x33)/2;int c_y = (y11 + y33)/2;int h = (int)(Math.sqrt(Math.pow(x33 - x11, 2) + Math.pow(y33 - y11, 2))*Math.sqrt(3)/2);int dx = (int)(Math.cos(Math.PI/6) * h);int dy = (int)(Math.sin(Math.PI/6) * h);int x22 = c_x - dx;int y22 = c_y - dy;new_x[4 * i + 1] = x11;new_y[4 * i + 1] = y11;new_x[4 * i + 2] = x22;new_y[4 * i + 2] = y22;new_x[4 * i + 3] = x33;new_y[4 * i + 3] = y33;}else if(old_x[i] < old_x[i + 1] && old_y[i] < old_y[i + 1]){int x11 = old_x[i] + (old_x[i + 1] - old_x[i])/3;int y11 = old_y[i] + (old_y[i + 1] - old_y[i])/3;int x33 = old_x[i] + 2 * (old_x[i + 1] - old_x[i])/3;int y33 = old_y[i] + 2 * (old_y[i + 1] - old_y[i])/3;int c_x = (x11 + x33)/2;int c_y = (y11 + y33)/2;int h = (int)(Math.sqrt(Math.pow(x33 - x11, 2) + Math.pow(y33 - y11, 2))*Math.sqrt(3)/2);int dx = (int)(Math.cos(Math.PI/6) * h);int dy = (int)(Math.sin(Math.PI/6) * h);int x22 = c_x + dx;int y22 = c_y - dy;new_x[4 * i + 1] = x11;new_y[4 * i + 1] = y11;new_x[4 * i + 2] = x22;new_y[4 * i + 2] = y22;new_x[4 * i + 3] = x33;new_y[4 * i + 3] = y33;}else if(old_x[i] > old_x[i + 1] && old_y[i] > old_y[i + 1]){int x11 = old_x[i + 1] + 2 * (old_x[i] - old_x[i + 1])/3;int y11 = old_y[i + 1] + 2 * (old_y[i] - old_y[i + 1])/3;int x33 = old_x[i + 1] + (old_x[i] - old_x[i + 1])/3;int y33 = old_y[i + 1] + (old_y[i] - old_y[i + 1])/3;int c_x = (x11 + x33)/2;int c_y = (y11 + y33)/2;int h = (int)(Math.sqrt(Math.pow(x33 - x11, 2) + Math.pow(y33 - y11, 2))*Math.sqrt(3)/2);int dx = (int)(Math.cos(Math.PI/6) * h);int dy = (int)(Math.sin(Math.PI/6) * h);int x22 = c_x - dx;int y22 = c_y + dy;new_x[4 * i + 1] = x11;new_y[4 * i + 1] = y11;new_x[4 * i + 2] = x22;new_y[4 * i + 2] = y22;new_x[4 * i + 3] = x33;new_y[4 * i + 3] = y33;}else if(old_x[i] > old_x[i + 1] && old_y[i + 1] > old_y[i]){int x11 = old_x[i + 1] + 2 * (old_x[i] - old_x[i + 1])/3;int y11 = old_y[i] + (old_y[i + 1] - old_y[i])/3;int x33 = old_x[i + 1] + (old_x[i] - old_x[i + 1])/3;int y33 = old_y[i] + 2 * (old_y[i + 1] - old_y[i])/3;int c_x = (x11 + x33)/2;int c_y = (y11 + y33)/2;int h = (int)(Math.sqrt(Math.pow(x33 - x11, 2) + Math.pow(y33 - y11, 2))*Math.sqrt(3)/2);int dx = (int)(Math.cos(Math.PI/6) * h);int dy = (int)(Math.sin(Math.PI/6) * h);int x22 = c_x + dx;int y22 = c_y + dy;new_x[4 * i + 1] = x11;new_y[4 * i + 1] = y11;new_x[4 * i + 2] = x22;new_y[4 * i + 2] = y22;new_x[4 * i + 3] = x33;new_y[4 * i + 3] = y33;}}}else{//选择判断语句结束break;}}}//}public void Start(){	//用来调用doSomething函数进行求点画图//动态的调用的doSomething()函数得到足够大的坐标集for(int i = 0; i < 5; i++){doSomething(new_x[0], new_y[0], new_x[1], new_y[1]);}for(int j = 0; j < new_x.length - 1; j++){		//将坐标集里面的点连接起来gr.drawLine(new_x[j], new_y[j], new_x[j + 1], new_y[j + 1]);}}
}

 

这篇关于使用暴力的方法(循环)实现科赫曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082058

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima