【Gradio】使用 Gradio 进行表格数据科学工作流

2024-06-21 13:44

本文主要是介绍【Gradio】使用 Gradio 进行表格数据科学工作流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

表格数据科学是机器学习中最广泛使用的领域,涉及的问题从客户细分到流失预测不等。在表格数据科学工作流的各个阶段,与利益相关者或客户沟通您的工作可能会很麻烦;这阻止了数据科学家专注于重要的事情,如数据分析和模型构建。数据科学家可能会花费数小时构建一个仪表板,该仪表板接收dataframe 并返回plots图表,或返回数据集中的群集的预测或图表。在本指南中,我们将介绍如何使用 gradio 来改进您的数据科学工作流程。我们还将讨论如何使用 gradio 和 skops 仅用一行代码构建接口!

 先决条件 

确保您已经安装了 gradio Python 包。

让我们创建一个简单的界面! 

我们将看看如何创建一个简单的 UI,根据产品信息预测故障。

# 导入gradio、pandas、joblib和datasets库
import gradio as gr
import pandas as pd
import joblib
import datasets# 创建Gradio的输入与输出界面,输入是一个数据表格,输出是预测结果的数据表格
inputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(4, "dynamic"), label="输入数据", interactive=1)]
outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="预测结果", headers=["故障数"])]# 从“model.pkl”加载预训练的模型
model = joblib.load("model.pkl")# 从datasets库中加载样例数据集“merve/supersoaker-failures”
df = datasets.load_dataset("merve/supersoaker-failures")
df = df["train"].to_pandas()# 定义预测函数,将从Gradio接口接收到的输入数据用预训练的模型进行预测
def infer(input_dataframe):return pd.DataFrame(model.predict(input_dataframe))# 创建Gradio界面,设置函数、输入与输出方式,并给出样例数据
gr.Interface(fn=infer, inputs=inputs, outputs=outputs, examples=[[df.head(2)]]).launch()

让我们分解上面的代码。

  • fn :一个推理函数,它接受输入数据框并返回预测。

  • inputs :我们用来取输入的组件。我们将输入定义为一个有 2 行 4 列的数据框,最初它看起来像一个空的数据框,有上述的形状。当 row_count 设置为 dynamic 时,你不必依赖于你输入到预定义组件的数据集。

  • outputs :存储输出的数据框组件。这个 UI 可以取单个或多个样本进行推断,并且在一列中为每个样本返回 0 或 1,所以我们在上面给 row_count 为 2 和 col_count 为 1。 headers 是一个由数据框的表头名称组成的列表。

  • examples :你可以通过拖放 CSV 文件,或者通过示例传递一个 pandas 数据框,其表头将被界面自动获取。

我们现在将创建一个最简数据可视化仪表板的例子。您可以在相关空间中找到一个更全面的版本。

419e4f3497dca53ef267003beb084c02.png

# 导入gradio、pandas、datasets、seaborn和matplotlib.pyplot库
import gradio as gr
import pandas as pd
import datasets
import seaborn as sns
import matplotlib.pyplot as plt# 从datasets库中加载样例数据集“merve/supersoaker-failures”,并把空值所在行删除
df = datasets.load_dataset("merve/supersoaker-failures")
# 将"datasets"库加载的数据集转换为pandas的DataFrame格式
df = df["train"].to_pandas()
df.dropna(axis=0, inplace=True)# 定义函数来创建散点图、条形图和热力图
def plot(df):# 创建散点图plt.scatter(df.measurement_13, df.measurement_15, c = df.loading,alpha=0.5)plt.savefig("scatter.png")# 创建条形图df['failure'].value_counts().plot(kind='bar')plt.savefig("bar.png")# 创建热力图sns.heatmap(df.select_dtypes(include="number").corr())plt.savefig("corr.png")# 指定结果图像的文件路径plots = ["corr.png","scatter.png", "bar.png"]return plots# 创建Gradio的输入和输出格式,输入为数据框,输出为图像画廊
inputs = [gr.Dataframe(label="Supersoaker生产数据")]
outputs = [gr.Gallery(label="分析仪表板", columns=(1,3))]# 使用Gradio创建界面,并启动
gr.Interface(plot, inputs=inputs, outputs=outputs, examples=[df.head(100)], title="Supersoaker故障分析仪表板").launch()

ea27c31b1537904610202b9e0958ff01.png

38318d999be6693328dad1a4d2ea8311.png

这段代码的作用是创建了一个交互式的分析仪表板,它可以直观地展示数据集“merve/supersoaker-failures”的散点图、条形图和热力图,使用户能更直观地了解数据情况,并帮助用户进行数据分析。

我们将使用训练模型时用的同一数据集,但这次我们将制作一个仪表板来可视化它。

  • fn :将根据数据创建图表的函数。

  • inputs :我们使用了上面相同的 Dataframe 组件。

  • outputs : Gallery 组件用于保持我们的可视化。

  • examples :我们将以数据集本身为例。

使用 skops  一行代码即可轻松加载表格数据接口

skops 是建立在 huggingface_hub 和 sklearn 之上的库。随着最近 gradio 对 skops 的集成,您可以用一行代码构建表格数据接口!

# 导入Gradio库,用于构建Web GUI
import gradio as gr# title和description是可选的,用于定义Web界面的标题和描述信息
title = "Supersoaker故障产品预测"
description = "该模型预测Supersoaker生产线上的故障。你可以拖拽数据集的任何部分,或者在下方的数据框组件中按需编辑值。"# 使用Gradio的load方法加载一个名为“huggingface/scikit-learn/tabular-playground”的模型
# 并设置了标题和描述。这个模型是从Hugging Face Hub上获取的,用于表格数据的预测
gr.load("huggingface/scikit-learn/tabular-playground", title=title, description=description).launch()

使用 skops 推送到 Hugging Face Hub 的 sklearn 模型包括一个 config.json 文件,其中包含带有列名的示例输入,以及正在解决的任务(可以是 tabular-classification 或 tabular-regression )。根据任务类型, gradio 构建 Interface 并使用列名和示例输入来构建它。您可以参考 skops 关于在 Hub 上托管模型的文档,了解如何使用 skops 将模型推送到 Hub。https://skops.readthedocs.io/en/v0.9.0/auto_examples/index.html

这篇关于【Gradio】使用 Gradio 进行表格数据科学工作流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081380

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本