两个让Transformer网络变得更简单,更高效的方法

2024-06-21 09:18

本文主要是介绍两个让Transformer网络变得更简单,更高效的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Sainbayar Sukhbaatar, Armand Joulin

编译:ronghuaiyang

导读

Transformer网络给深度学习的许多领域带来了巨大的进步,但它们在训练和推理过程中都非常需要计算资源,今天给大家带来两个使Transformer模型更简单、更高效的方法。

Transformer网络给深度学习的许多领域带来了巨大的进步,包括机器翻译、文本理解、语音和图像处理。尽管这些网络功能强大,但它们在训练和推理过程中都非常需要计算资源,这限制了它们的大规模的使用,尤其是对具有长期依赖关系的序列。Facebook人工智能的一项新研究正在寻找使Transformer模型更简单、更高效的方法。

为了更广泛地使用这种强大的深度学习体系结构,我们提出了两种新方法。第一,adaptive attention span,这是一个让Transformer网络对于长句子更有效率的方法。使用这种方法,我们能够在不显著增加计算时间或内存占用的情况下,将Transformer的注意广度增加到8000多个令牌。第二,all-attention layer,这是一种简化Transformer模型结构的方法。即使是一个简单得多的结构,我们的all-attention网络也可以匹配Transformer网络的性能上。我们认为,这项提高Transformer网络效率的工作是朝着使Transformer网络具有更广泛的应用迈出的重要一步。

Adaptive attention span

本研究的目的是使Transformer网络的计算效率更高,特别是在处理非常长的序列时。我们发现数据中的长期关系的需要更长的注意力的范围。然而,增加注意范围也会增加Transformer的计算时间和内存占用。

在我们对Transformer的实验中,我们发现并不是所有的注意力heads都充分利用了它们的注意范围。事实上,在一项字符级语言建模的任务中,大多数heads只使用了他们注意力范围的一小部分。如果我们能在训练中利用这一特性,我们就能显著减少计算时间和内存占用,因为两者都依赖于注意力范围的长度。不幸的是,我们不知道每个head的注意力范围是多少。在多次尝试启发式地设置注意范围之后,我们意识到,如果我们能从数据本身学到这一点,那是最好的。

由于注意范围是整数(因此是不可微的),我们不能像模型的其他参数那样通过反向传播直接学习它。但是,我们可以使用soft-masking函数将其转换为连续值。这个函数的值平滑地从1到0,这使得它可以对掩模长度求导。我们只需将这个掩模函数插入到每个注意力head中,这样每个head就可以根据数据确定不同的注意力范围。

640?wx_fmt=png

通过我们的自适应注意范围机制,我们设法将Transformer的注意范围提高到超过8000个tokens,而不会显著增加它的计算时间和内存占用。在字符级语言建模任务上,这导致了性能的提高,从而改进了现有技术的状态,使用了更少的参数。

640?wx_fmt=png

虽然模型中最长的注意力范围超过了8000步,但是平均的注意力范围只有200步左右,这使得模型运行起来更加高效。这反映在每一步的FLOPS上,这对于这些模型来说要小得多。在下面的图中,我们展示了一个这样的学习注意力范围,在一个12层的模型中,每层有8个heads。我们可以看到96个heads中只有5个有超过1000步的跨度。

640?wx_fmt=jpeg

我们已经发布了论文里的实验代码:https://l.facebook.com/l.php?u=https%3A%2F%2Fgithub.com%2Ffacebookresearch%2Fadaptive-span&h=AT3JCYNSm6Vd_t22nJUI6LUGDJXadI9sASr5E2KXFeVuzC0vkzMFavpGFZNTMFnHjw01Y18-M4TwVhUERft8vEhUI9ntCvHtatJ6M1ByU7ynviyVSDqvNbELeV_yYECjdz9SrJvYC_mxf4KVirIeXA由PyTorch实现,可以方便的集成到其他模型中。

All-attention layer

接下来,我们着重于简化Transformer网络的结构。Transformer由两个子层组成:自注意层和前馈层。虽然自注意层被认为是主要的组件,但是前馈子层对于高性能非常重要,这就是为什么它的大小通常设置为网络其他部分的四倍。

从表面上看,自我注意和前馈子层看起来非常不同。然而,一个简单的改变,前馈子层可以变成一个注意层。将ReLU非线性函数替换为softmax函数,可以将其激活解释为注意权值。此外,我们可以把第一个线性变换看作key向量,把第二个线性变换看作value向量。

利用这个解释,我们将前馈子层合并到自注意层,创建一个统一的注意层,我们称之为“all-attention”层。我们所要做的就是在一个自我注意层的key和value中添加一组额外的向量。这些额外的向量就和前馈子层的权值是一样的:固定的、可训练的和上下文无关的。相反,根据上下文计算的key和value会根据当前上下文动态更改。

640?wx_fmt=png

由于额外的向量可以充当一个前馈子层,并获取关于任务的一般知识,所以我们可以从网络中删除所有前馈子层。最终,我们的all-attention网络只是一堆全注意力层。在语言建模基准测试任务上,我们的all-attention网络与最先进的Transformer网络性能相当,并具有更简单的结构。我们希望这种简化的体系结构将为更好地理解和改进Transformer网络开辟道路。

640?wx_fmt=png

—END—

英文原文:https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧640?wx_fmt=gif

这篇关于两个让Transformer网络变得更简单,更高效的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080817

相关文章

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.