两个让Transformer网络变得更简单,更高效的方法

2024-06-21 09:18

本文主要是介绍两个让Transformer网络变得更简单,更高效的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Sainbayar Sukhbaatar, Armand Joulin

编译:ronghuaiyang

导读

Transformer网络给深度学习的许多领域带来了巨大的进步,但它们在训练和推理过程中都非常需要计算资源,今天给大家带来两个使Transformer模型更简单、更高效的方法。

Transformer网络给深度学习的许多领域带来了巨大的进步,包括机器翻译、文本理解、语音和图像处理。尽管这些网络功能强大,但它们在训练和推理过程中都非常需要计算资源,这限制了它们的大规模的使用,尤其是对具有长期依赖关系的序列。Facebook人工智能的一项新研究正在寻找使Transformer模型更简单、更高效的方法。

为了更广泛地使用这种强大的深度学习体系结构,我们提出了两种新方法。第一,adaptive attention span,这是一个让Transformer网络对于长句子更有效率的方法。使用这种方法,我们能够在不显著增加计算时间或内存占用的情况下,将Transformer的注意广度增加到8000多个令牌。第二,all-attention layer,这是一种简化Transformer模型结构的方法。即使是一个简单得多的结构,我们的all-attention网络也可以匹配Transformer网络的性能上。我们认为,这项提高Transformer网络效率的工作是朝着使Transformer网络具有更广泛的应用迈出的重要一步。

Adaptive attention span

本研究的目的是使Transformer网络的计算效率更高,特别是在处理非常长的序列时。我们发现数据中的长期关系的需要更长的注意力的范围。然而,增加注意范围也会增加Transformer的计算时间和内存占用。

在我们对Transformer的实验中,我们发现并不是所有的注意力heads都充分利用了它们的注意范围。事实上,在一项字符级语言建模的任务中,大多数heads只使用了他们注意力范围的一小部分。如果我们能在训练中利用这一特性,我们就能显著减少计算时间和内存占用,因为两者都依赖于注意力范围的长度。不幸的是,我们不知道每个head的注意力范围是多少。在多次尝试启发式地设置注意范围之后,我们意识到,如果我们能从数据本身学到这一点,那是最好的。

由于注意范围是整数(因此是不可微的),我们不能像模型的其他参数那样通过反向传播直接学习它。但是,我们可以使用soft-masking函数将其转换为连续值。这个函数的值平滑地从1到0,这使得它可以对掩模长度求导。我们只需将这个掩模函数插入到每个注意力head中,这样每个head就可以根据数据确定不同的注意力范围。

640?wx_fmt=png

通过我们的自适应注意范围机制,我们设法将Transformer的注意范围提高到超过8000个tokens,而不会显著增加它的计算时间和内存占用。在字符级语言建模任务上,这导致了性能的提高,从而改进了现有技术的状态,使用了更少的参数。

640?wx_fmt=png

虽然模型中最长的注意力范围超过了8000步,但是平均的注意力范围只有200步左右,这使得模型运行起来更加高效。这反映在每一步的FLOPS上,这对于这些模型来说要小得多。在下面的图中,我们展示了一个这样的学习注意力范围,在一个12层的模型中,每层有8个heads。我们可以看到96个heads中只有5个有超过1000步的跨度。

640?wx_fmt=jpeg

我们已经发布了论文里的实验代码:https://l.facebook.com/l.php?u=https%3A%2F%2Fgithub.com%2Ffacebookresearch%2Fadaptive-span&h=AT3JCYNSm6Vd_t22nJUI6LUGDJXadI9sASr5E2KXFeVuzC0vkzMFavpGFZNTMFnHjw01Y18-M4TwVhUERft8vEhUI9ntCvHtatJ6M1ByU7ynviyVSDqvNbELeV_yYECjdz9SrJvYC_mxf4KVirIeXA由PyTorch实现,可以方便的集成到其他模型中。

All-attention layer

接下来,我们着重于简化Transformer网络的结构。Transformer由两个子层组成:自注意层和前馈层。虽然自注意层被认为是主要的组件,但是前馈子层对于高性能非常重要,这就是为什么它的大小通常设置为网络其他部分的四倍。

从表面上看,自我注意和前馈子层看起来非常不同。然而,一个简单的改变,前馈子层可以变成一个注意层。将ReLU非线性函数替换为softmax函数,可以将其激活解释为注意权值。此外,我们可以把第一个线性变换看作key向量,把第二个线性变换看作value向量。

利用这个解释,我们将前馈子层合并到自注意层,创建一个统一的注意层,我们称之为“all-attention”层。我们所要做的就是在一个自我注意层的key和value中添加一组额外的向量。这些额外的向量就和前馈子层的权值是一样的:固定的、可训练的和上下文无关的。相反,根据上下文计算的key和value会根据当前上下文动态更改。

640?wx_fmt=png

由于额外的向量可以充当一个前馈子层,并获取关于任务的一般知识,所以我们可以从网络中删除所有前馈子层。最终,我们的all-attention网络只是一堆全注意力层。在语言建模基准测试任务上,我们的all-attention网络与最先进的Transformer网络性能相当,并具有更简单的结构。我们希望这种简化的体系结构将为更好地理解和改进Transformer网络开辟道路。

640?wx_fmt=png

—END—

英文原文:https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧640?wx_fmt=gif

这篇关于两个让Transformer网络变得更简单,更高效的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080817

相关文章

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操