用AI来做图像复原,上下文自编码器 + GAN,Pytorch源码解析

2024-06-21 08:18

本文主要是介绍用AI来做图像复原,上下文自编码器 + GAN,Pytorch源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Hmrishav Bandyopadhyay

编译:ronghuaiyang

导读

一篇比较经典的图像复原的文章。

你知道在那个满是灰尘的相册里的童年旧照片是可以复原的吗?是啊,就是那种每个人都手牵着手,尽情享受生活的那种!不相信我吗?看看这个:

图像修复是人工智能研究的一个活跃领域,人工智能已经能够得出比大多数艺术家更好的修复结果。在本文中,我们将讨论使用神经网络,特别是上下文编码器的图像修复。本文解释并实现了在CVPR 2016中提出的关于上下文编码器的研究工作。

上下文编码器

为了开始使用上下文编码器,我们必须了解什么是“自编码器”。自编码器在结构上由编码器、解码器以及一个bottleneck组成。一般的自编码器的目的是通过忽略图像中的噪声来减小图像的尺寸。然而,自编码器不是特定于图像,也可以扩展到其他数据。自编码器有特定的变体来完成特定的任务。

自编码器结构

既然我们已经了解了自编码器,我们就可以将上下文编码器比作自编码器。上下文编码器是一种卷积神经网络,经过训练,根据周围环境生成任意图像区域的内容:即上下文编码器接收图像区域周围的数据,并尝试生成适合该图像区域的东西。就像我们小的时候拼拼图一样 —— 只是我们不需要生成拼图的碎片。

我们这里的上下文编码器由一个编码器和一个解码器组成,前者将图像的上下文捕获为一个紧凑的潜在特征表示,后者使用该表示来生成缺失的图像内容。由于我们需要一个庞大的数据集来训练一个神经网络,我们不能只处理修复问题图像。因此,我们从正常的图像数据集中分割出部分图像,创建一个修复问题,并将图像提供给神经网络,从而在我们分割的区域创建缺失的图像内容。

这里需要注意的是,输入到神经网络的图像有太多的缺失部分,经典的修复方法根本无法工作。

GAN的使用

GANs或生成对抗网络已被证明对图像生成极为有用。生成对抗网络运行的基本原理是:一个生成器试图“愚弄”一个鉴别器,一个确定的鉴别器试图区分出生成器生成的图像。换句话说,两个网络试图分别使损失函数最小化和最大化。

区域掩码

区域掩模是我们所屏蔽的图像的一部分,这样我们就可以将生成的修复问题提供给模型。通过屏蔽,我们将该图像区域的像素值设置为0。有三种方法:

  1. 中心区域:对图像数据进行遮挡,最简单的方法是将中心的正方形斑块设为零。虽然网络学习修复,但我们面临着泛化的问题。该网络不能很好地泛化,只能学习到低层次的特征。

  2. 随机块:为了应对网络“锁定”到掩码区域边界的问题,如在中央区域掩码中,掩码过程是随机的。不是选择一个单一的正方形贴片作为掩码,而是设置多个重叠的正方形掩码,最多占图像的1/4。

  3. 随机区域:然而,随机块掩蔽仍然有清晰的边界供网络捕捉。为了解决这个问题,任意的形状必须从图像中移除。可以从PASCAL VOC 2012数据集中获得任意形状,并在任意图像位置进行变形和作为掩模放置。

从左到右,a)中心掩码,b)随机块掩码,c)随机区域掩码

在这里,我只实现了中心区域掩蔽方法,因为这只是一个指南,让你开始用AI修复绘画。你可以尝试其他屏蔽方法,并在评论中告诉我结果!

结构

现在,你应该对模型有了一些了解。让我们看看你是否正确。

该模型由一个编码器和一个解码器部分组成,构建了模型的上下文编码器部分。这部分还充当生成数据和试图愚弄鉴别器的生成器。该鉴别器由卷积网络和一个最终给出一个标量作为输出的Sigmoid函数组成。

损失

模型的损失函数分为2部分:

1、重建损失:重建损失是L2损失函数。它有助于捕捉缺失区域的整体结构和与其上下文相关的连贯性。数学上,它被表示为:

这里需要注意的是,仅使用L2损耗会使图像变得模糊。因为模糊的图像减少了平均像素的误差,因此L2损失是最小的,但这不是我们想要的。

2、对抗损失:这试图使预测“看起来”真实(记住生成器必须可以欺骗鉴别器!),这帮助我们在克服L2损失会导致我们得到模糊的图像。数学上,我们可以把它表示为:

这里有一个有趣的观察:对抗损失鼓励整个输出看起来真实,而不仅仅是缺失的部分。换句话说,对抗性网络给了整个图像一个真实的外观。

总的损失函数:

我们来构建这个模型!

现在,因为我们已经清楚了网络的主要的要点,让我们开始构建模型。我将首先建立模型结构,然后进入训练和损失函数部分。该模型使用PyTorch进行构建。

让我们从生成网络开始:

import torch
from torch import nn
class generator(nn.Module):#generator modeldef __init__(self):super(generator,self).__init__()self.t1=nn.Sequential(nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(4,4),stride=2,padding=1),nn.LeakyReLU(0.2,in_place=True))self.t2=nn.Sequential(nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(64),nn.LeakyReLU(0.2,in_place=True))self.t3=nn.Sequential(nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(128),nn.LeakyReLU(0.2,in_place=True))self.t4=nn.Sequential(nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(256),nn.LeakyReLU(0.2,in_place=True))self.t5=nn.Sequential(nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(512),nn.LeakyReLU(0.2,in_place=True))self.t6=nn.Sequential(nn.Conv2d(512,4000,kernel_size=(4,4))#bottlenecknn.BatchNorm2d(4000),nn.ReLU())self.t7=nn.Sequential(nn.ConvTranspose2d(in_channels=512,out_channels=256,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(256),nn.ReLU())self.t8=nn.Sequential(nn.ConvTranspose2d(in_channels=256,out_channels=128,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(128),nn.ReLU())self.t9=nn.Sequential(nn.ConvTranspose2d(in_channels=128,out_channels=64,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(64),nn.ReLU())self.t10=nn.Sequential(nn.ConvTranspose2d(in_channels=64,out_channels=3,kernel_size=(4,4),stride=2,padding=1),nn.Tanh())def forward(self,x):x=self.t1(x)x=self.t2(x)x=self.t3(x)x=self.t4(x)x=self.t5(x)x=self.t6(x)x=self.t7(x)x=self.t8(x)x=self.t9(x)x=self.t10(x)return x #output of generator
网络的生成器模型

现在,是鉴别器网络:

import torch
from torch import nn
class discriminator(nn.Module):#discriminator modeldef __init__(self):super(discriminator,self).__init__()self.t1=nn.Sequential(nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(4,4),stride=2,padding=1),nn.LeakyReLU(0.2,in_place=True))self.t2=nn.Sequential(nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(128),nn.LeakyReLU(0.2,in_place=True))self.t3=nn.Sequential(nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(256),nn.LeakyReLU(0.2,in_place=True))self.t4=nn.Sequential(nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(4,4),stride=2,padding=1),nn.BatchNorm2d(512),nn.LeakyReLU(0.2,in_place=True))self.t5=nn.Sequential(nn.Conv2d(in_channels=512,out_channels=1,kernel_size=(4,4),stride=1,padding=0),nn.Sigmoid())        def forward(self,x):x=self.t1(x)x=self.t2(x)x=self.t3(x)x=self.t4(x)x=self.t5(x)return x #output of discriminator
鉴别器网络

现在让我们开始训练网络。我们将batch size设置为64,epoch的数量设置为100。学习速率设置为0.0002。

from model import generator, discriminator
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variablefrom model import _netlocalD,_netG
import utils
epochs=100
Batch_Size=64
lr=0.0002
beta1=0.5
over=4
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot',  default='dataset/train', help='path to dataset')
opt = parser.parse_args()
try:os.makedirs("result/train/cropped")os.makedirs("result/train/real")os.makedirs("result/train/recon")os.makedirs("model")
except OSError:passtransform = transforms.Compose([transforms.Scale(128),transforms.CenterCrop(128),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset = dset.ImageFolder(root=opt.dataroot, transform=transform )
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=Batch_Size,shuffle=True, num_workers=2)ngpu = int(opt.ngpu)wtl2 = 0.999# custom weights initialization called on netG and netD
def weights_init(m):classname = m.__class__.__name__if classname.find('Conv') != -1:m.weight.data.normal_(0.0, 0.02)elif classname.find('BatchNorm') != -1:m.weight.data.normal_(1.0, 0.02)m.bias.data.fill_(0)resume_epoch=0netG = generator()
netG.apply(weights_init)netD = discriminator()
netD.apply(weights_init)criterion = nn.BCELoss()
criterionMSE = nn.MSELoss()input_real = torch.FloatTensor(Batch_Size, 3, 128, 128)
input_cropped = torch.FloatTensor(Batch_Size, 3, 128, 128)
label = torch.FloatTensor(Batch_Size)
real_label = 1
fake_label = 0real_center = torch.FloatTensor(Batch_Size, 3, 64,64)netD.cuda()
netG.cuda()
criterion.cuda()
criterionMSE.cuda()
input_real, input_cropped,label = input_real.cuda(),input_cropped.cuda(), label.cuda()
real_center = real_center.cuda()input_real = Variable(input_real)
input_cropped = Variable(input_cropped)
label = Variable(label)real_center = Variable(real_center)optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))for epoch in range(resume_epoch,epochs):for i, data in enumerate(dataloader, 0):real_cpu, _ = datareal_center_cpu = real_cpu[:,:,int(128/4):int(128/4)+int(128/2),int(128/4):int(128/4)+int(128/2)]batch_size = real_cpu.size(0)with torch.no_grad():input_real.resize_(real_cpu.size()).copy_(real_cpu)input_cropped.resize_(real_cpu.size()).copy_(real_cpu)real_center.resize_(real_center_cpu.size()).copy_(real_center_cpu)input_cropped[:,0,int(128/4+over):int(128/4+128/2-over),int(128/4+over):int(128/4+128/2-over)] = 2*117.0/255.0 - 1.0input_cropped[:,1,int(128/4+over):int(128/4+128/2-over),int(128/4+over):int(128/4+128/2-over)] = 2*104.0/255.0 - 1.0input_cropped[:,2,int(128/4+over):int(128/4+128/2-over),int(128/4+over):int(128/4+128/2-over)] = 2*123.0/255.0 - 1.0#start the discriminator by training with real data---netD.zero_grad()with torch.no_grad():label.resize_(batch_size).fill_(real_label)output = netD(real_center)errD_real = criterion(output, label)errD_real.backward()D_x = output.data.mean()# train the discriminator with fake data---fake = netG(input_cropped)label.data.fill_(fake_label)output = netD(fake.detach())errD_fake = criterion(output, label)errD_fake.backward()D_G_z1 = output.data.mean()errD = errD_real + errD_fakeoptimizerD.step()#train the generator now---netG.zero_grad()label.data.fill_(real_label)  # fake labels are real for generator costoutput = netD(fake)errG_D = criterion(output, label)wtl2Matrix = real_center.clone()wtl2Matrix.data.fill_(wtl2*10)wtl2Matrix.data[:,:,int(over):int(128/2 - over),int(over):int(128/2 - over)] = wtl2errG_l2 = (fake-real_center).pow(2)errG_l2 = errG_l2 * wtl2MatrixerrG_l2 = errG_l2.mean()errG = (1-wtl2) * errG_D + wtl2 * errG_l2errG.backward()D_G_z2 = output.data.mean()optimizerG.step()print('[%d / %d][%d / %d] Loss_D: %.4f Loss_G: %.4f / %.4f l_D(x): %.4f l_D(G(z)): %.4f'% (epoch, epochs, i, len(dataloader),errD.data, errG_D.data,errG_l2.data, D_x,D_G_z1, ))if i % 100 == 0:vutils.save_image(real_cpu,'result/train/real/real_samples_epoch_%03d.png' % (epoch))vutils.save_image(input_cropped.data,'result/train/cropped/cropped_samples_epoch_%03d.png' % (epoch))recon_image = input_cropped.clone()recon_image.data[:,:,int(128/4):int(128/4+128/2),int(128/4):int(128/4+128/2)] = fake.datavutils.save_image(recon_image.data,'result/train/recon/recon_center_samples_epoch_%03d.png' % (epoch))
训练生成器和鉴别器的训练模块

结果

让我们看一下我们的模型能够构建出什么来?第0个epoch时候的图像(噪声):

第100个epoch时候:

我们看下输入模型的是什么:

—END—

英文原文:https://towardsdatascience.com/inpainting-with-ai-get-back-your-images-pytorch-a68f689128e5

请长按或扫描二维码关注本公众号

喜欢的话,请给我个在看吧

这篇关于用AI来做图像复原,上下文自编码器 + GAN,Pytorch源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080687

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?