KBQA 图谱问答论文整理

2024-06-21 07:38
文章标签 整理 问答 图谱 论文 kbqa

本文主要是介绍KBQA 图谱问答论文整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号 系统之神与我同在

本文来自知乎和微信公众号收集

综述

1.Core techniques of question answering systems over knowledge bases: a survey. Dennis Diefenbach, Vanessa Lopez, Kamal Singh, Pierre Maret. Knowledge and Information Systems(2017). [PDF]
2.A Survey of Question Answering over Knowledge Base. Peiyun Wu, Xiaowang Zhang, Zhiyong Feng. CCIS(2019). [PDF]
3**.A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges.** Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li, Haiyang Yu, Jian Sun. arXiv(2020). [PDF]
4**.Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs.** Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi, Jens Lehmann, Asja Fischer. WIDM(2021). [PDF]
5.A Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions. Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, Ji-Rong Wen. IJCAI(2021). [PDF]

数据集

1.WebQuestions: “Semantic parsing on freebase from question-answer pairs”. EMNLP(2013). [PDF] [Homepage]
2.ComplexQuestions: “Constraint based question answering with knowledge graph”. COLING(2016). [PDF] [Homepage]
3.WebQuestionsSP: “The value of semantic parse labeling for knowledge base question answering”. ACL(2016). [PDF] [Homepage]
4.ComplexWebQuestions: “The web as a knowledge-base for answering complex questions”. NAACL(2018). [PDF] [Homepage]
5.QALD: “Evaluating question answering over linked data”. Web Semantics Science Services And Agents On The World Wide Web(2013). [PDF] [Homepage]
6.LC-QuAD 1.0: “Lc-quad: A corpus for complex question answering over knowledge graphs”. ISWC(2017). [PDF] [Homepage]
7.LC-QuAD 2.0: ““Lc-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia”. ISWC(2019). [PDF] [Homepage]
8.MetaQA Vanilla: “Variational reasoning for question answering with knowledge graph”. AAAI(2018). [PDF] [Homepage]
9.CFQ: “Measuring compositional generalization: A comprehensive method on realistic data”. ICLR(2020). [PDF] [Homepage]
10.KQA Pro: “Kqa pro: A large diagnostic dataset for complex question answering over knowledge base”. arXiv(2020). [PDF] [Homepage]
11.GrailQA: “Beyond I.I.D.: three levels of generalization for question answering on knowledge bases”. WWW(2021). [PDF] [Homepage]

基于语义解析的方法

1.Template-based question answering over RDF data. Unger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano. WWW(2012). [PDF]
2.Large-scale semantic parsing via schema matching and lexicon extension. Qingqing Cai, Alexander Yates. ACL(2013). [PDF]
3.Semantic parsing on freebase from question-answer pairs. Jonathan Berant, Andrew Chou, Roy Frostig, Percy Liang. EMNLP(2013). [PDF]
4.Large-scale semantic parsing without question-answer pairs. Siva Reddy, Mirella Lapata, Mark Steedman. TACL(2014). [PDF]
5.Semantic parsing for single relation question answering. Wen-tau Yih, Xiaodong He, Christopher Meek. ACL(2014). [PDF]
6.Information extraction over structured data: Question answering with Freebase. Xuchen Yao, Benjamin Van Durme. ACL(2014). [PDF]
7.Semantic parsing via staged query graph generation: Question answering with knowledge base. Wen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao. ACL(2015). [PDF]
8.Simple question answering by attentive convolutional neural network. Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze. COLING(2016). [PDF]
9.Learning to compose neural networks for question answering. Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein. NAACL(2016). [PDF] [Code]
10.Knowledge base question answering with a matching-aggregation model and question-specific contextual relations. Yunshi Lan, Shuohang Wang, Jing Jiang. TASLP(2019). [PDF]

基于信息检索的方法

1.Open question answering with weakly supervised embedding models. Antoine Bordes, Jason Weston, Nicolas Usunier. Machine Learning and Knowledge Discovery in Databases(2014). [PDF]
2**.Question answering with subgraph embeddings.** Antoine Bordes, Sumit Chopra, Jason Weston. EMNLP(2014). [PDF]
3.Larges cale simple question answering with memory networks. Antoine Bordes, Nicolas Usunier, Sumit Chopra, Jason Weston. arXiv(2015). [PDF] [Code]
4.Question answering over freebase with multi-column convolutional neural networks. Li Dong, Furu Wei, Ming Zhou, Ke Xu. ACL(2015). [PDF]
5.Question answering over knowledge base using factual memory networks. Sarthak Jain. NAACL(2016). [PDF]
6.An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, Jun Zhao. ACL(2017). [PDF]
7.Bidirectional Attentive Memory Networks for Question Answering over Knowledge Bases. Yu Chen, Lingfei Wu, Mohammed J. Zaki. NAACL(2019). [PDF] [Code]

其他方法

1.Hybrid question answering over knowledge base and free text. Kun Xu, Yansong Feng, Songfang Huang, Dongyan Zhao. COLING(2016). [PDF]
2.Question answering on freebase via relation extraction and textual evidence. Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, Dongyan Zhao. ACL(2016). [PDF] [Code]
3**.Improved neural relation detection for knowledge base question answering.** Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang, Bowen Zhou. ACL(2017). [PDF]
4.KBQA: learning question answering over QA corpora and knowledge bases. Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, Wei Wang. VLDB(2017). [PDF]
5.Knowledge base question answering with topic units. Yunshi Lan , Shuohang Wang, Jing Jiang. IJCAI(2019). [PDF]
6.Retrieval, Re-ranking and Multi-task Learning for Knowledge-Base Question Answering. Zhiguo Wang, Patrick Ng, Ramesh Nallapati, Bing Xiang. EACL(2021). [PDF] .

复杂KBQA
基于语义解析的方法
1.Automated template generation for question answering over knowledge graphs. Abujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum. WWW(2017). [PDF]
2.Neural symbolic machines: Learning semantic parsers on Freebase with weak supervision. Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao. ACL(2017). [PDF] [Code]
3.Knowledge base question answering via encoding of complex query graphs. Kangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu. EMNLP(2018). [PDF] [Code]
4.Neverending learning for open-domain question answering over knowledge bases. Abujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum. WWW(2018). [PDF]
5,A state-transition framework to answer complex questions over knowledge base. Sen Hu, Lei Zou, Xinbo Zhang. EMNLP(2018). [PDF]
6.Question answering over knowledge graphs: Question understanding via template decomposition. Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng. VLDB(2018). [PDF]
7.Learning to answer complex questions over knowledge bases with query composition. Bhutani, Nikita, Xinyi Zheng, H. Jagadish. CIKM(2019). [PDF]
8.UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering. Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku. NAACL(2019). [PDF]
9.Multi-hop knowledge base question answering with an iterative sequence matching model. * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
10.Learning to rank query graphs for complex question answering over knowledge graphs. Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann. ISWC(2019). [PDF] [Code]
11.Complex program induction for querying knowledge bases in the absence of gold programs. Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti. TACL(2019). [PDF][Code]
12.Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering. Jiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu. EMNLP(2019). [PDF]
13.Hierarchical query graph generation for complex question answering over knowledge graph. Qiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng. CIKM(2020). [PDF]
14.SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases. Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu. AAAI(2020). [PDF] [Code]
15.Formal query building with query structure prediction for complex question answering over knowledge base. Yongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi. IJCAI(2020). [PDF] [Code]
16.Query graph generation for answering multi-hop complex questions from knowledge bases. Yunshi Lan, Jing Jiang. ACL(2020). [PDF] [Code]
17.Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases. Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish. ACL(2020). [PDF]
18.Leveraging abstract meaning representation for knowledge base question answering. Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu. Findings of ACL(2021). [PDF]

基于信息检索的方法
1.Open domain question answering based on text enhanced knowledge graph with hyperedge infusion. Jiale Han, Bo Cheng, Xu Wang. Findings of EMNLP(2018). [PDF]
2.Open domain question answering using early fusion of knowledge bases and text. Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, William Cohen. EMNLP(2018). [PDF] [Code]
3.An interpretable reasoning network for multi-relation question answering. Mantong Zhou, Minlie Huang, Xiaoyan Zhu. COLING(2018). [PDF] [Code]
4.Variational reasoning for question answering with knowledge graph. Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, Le Song. AAAI(2018). [PDF] [Code]
5.Enhancing key-value memory neural networks for knowledge based question answering. Kun Xu, Yuxuan Lai, Yansong Feng, Zhiguo Wang. NAACL(2019). [PDF]
6.Pullnet: Open domain question answering with iterative retrieval on knowledge bases and text. Haitian Sun, Tania Bedrax-Weiss, William W. Cohen. EMNLP(2019). [PDF]
7.Improving question answering over incomplete kbs with knowledge-aware reader. Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, William Yang Wang. ACL(2019). [PDF] [Code]
8.Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs. Xiaolu Lu, Soumajit Pramanik, Rishiraj Saha Roy, Abdalghani Abujabal, Yafang Wang, Gerhard Weikum. SIGIR(2019). [PDF]
9.Two-phase Hypergraph Based Reasoning With Dynamic Relations For Multi-Hop KBQA. Jiale Han, Bo Cheng, Xu Wang. IJCAI(2020). [PDF]
10.Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. Apoorv Saxena, Aditay Tripathi, Partha Talukdar. ACL(2020). [PDF] [Code]
11.Stepwise reasoning for multi-relation question answering over knowledge graph with weak supervision. Qiu, Yunqi, Yuanzhuo Wang, Xiaolong Jin, K. Zhang. WSDM(2020). [PDF] [Code]
12.Modeling Long-distance Node Relations for KBQA with Global Dynamic Graph. Xu Wang, Shuai Zhao, Jiale Han, Bo Cheng, Hao Yang, Jianchang Ao, Zhenzi Li. COLING(2020). [PDF]
13.Improving multi-hop knowledge base question answering by learning intermediate supervision signals. Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, Ji-Rong Wen. WSDM(2021). [PDF] [Code]

5.3 其它方法
1.QUINT: Interpretable Question Answering over Knowledge Bases. Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed Yahya, Gerhard Weikum. EMNLP(2017). [PDF]
2.Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering. Daniil Sorokin, Iryna Gurevych. COLING(2018). [PDF] [Code]
3.PERQ: Predicting, Explaining, and Rectifying Failed Questions in KB-QA Systems. Zhiyong Wu, Ben Kao, Tien-Hsuan Wu, Pengcheng Yin, Qun Liu. WSDM(2020). [PDF]
4.Few-Shot Complex Knowledge Base Question Answering via Meta Reinforcement Learning. Yuncheng Hua, Yuan-Fang Li, Gholamreza Haffari, Guilin Qi, Tongtong Wu. EMNLP(2020). [PDF] [Code]
5.Question Answering Over Temporal Knowledge Graphs. Apoorv Saxena, Soumen Chakrabarti, Partha Talukdar. ACL(2021). [PDF] [Code]
6.Improving Zero-Shot Cross-lingual Transfer for Multilingual Question Answering over Knowledge Graph. Yucheng Zhou, Xiubo Geng, Tao Shen, Wenqiang Zhang, Daxin Jiang. NAACL(2021). [PDF]
7.Complex Question Answering on knowledge graphs using machine translation and multi-task learning. Saurabh Srivastava, Mayur Patidar, Sudip Chowdhury, Puneet Agarwal, Indrajit Bhattacharya, Gautam Shroff. EACL(2021). [PDF]

这篇关于KBQA 图谱问答论文整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080607

相关文章

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Mysql中InnoDB与MyISAM索引差异详解(最新整理)

《Mysql中InnoDB与MyISAM索引差异详解(最新整理)》InnoDB和MyISAM在索引实现和特性上有差异,包括聚集索引、非聚集索引、事务支持、并发控制、覆盖索引、主键约束、外键支持和物理存... 目录1. 索引类型与数据存储方式InnoDBMyISAM2. 事务与并发控制InnoDBMyISAM

StarRocks索引详解(最新整理)

《StarRocks索引详解(最新整理)》StarRocks支持多种索引类型,包括主键索引、前缀索引、Bitmap索引和Bloomfilter索引,这些索引类型适用于不同场景,如唯一性约束、减少索引空... 目录1. 主键索引(Primary Key Index)2. 前缀索引(Prefix Index /

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已