正确理解 ThreadLocal 的原理与应用场景

2024-06-21 06:38

本文主要是介绍正确理解 ThreadLocal 的原理与应用场景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、ThreadLocal解决了什么问题

网上有很多关于ThreadLocal解决了什么问题的资料,但是很多都是不正确的。

不正确的理解

  • ThreadLocal为解决多线程程序的并发问题提供了一种新的思路
  • ThreadLocal的目的是为了解决多线程访问资源时的共享问题

正确的理解

看看JDK中的源码是怎么写的:

【原文】This class provides thread-local variables. These variables differ from their normal counterparts in that each thread that accesses one (via its {@code get} or {@code set} method) has its own, independently initialized copy of the variable. {@code ThreadLocal} instances are typically private static fields in classes that wish to associate state with a thread (e.g., a user ID or Transaction ID).
【翻译】ThreadLocal类提了供线程本地变量。它与普通变量的区别在于,每个使用该变量的线程都会初始化一个完全独立的副本。ThreadLocal 变量通常被private static修饰,用于关联线程上下文。

ThreadLoal变量,它的基本原理是,同一个 ThreadLocal 所包含的对象(对ThreadLocal<String>而言即为 String 类型变量),在不同的 Thread 中有不同的副本。
因为每个 Thread 内有自己的实例副本,且该副本只能由当前 Thread 使用。那就不存在多线程间共享资源的问题,既无共享,何来同步问题,又何来解决同步问题一说?

通过上面的分析,可以一句话总结ThreadLocal解决的问题:ThreadLocal提供了线程本地变量,每个线程都有一个该变量的副本,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或者组件之间一些公共变量的传递的复杂度。

二、ThreadLocal应用场景

基于ThreadLocal解决的问题,我们可以将ThreadLocal应用到很多场景中。

  • 场景一:当一个变量需要在线程间隔离而在方法或类间共享时,可以使用ThreadLocal。
  • 场景二:……

三、ThreadLocal用法

public class ThreadLocalDemo {public static void main(String[] args) {new Thread(new InnerClass(),"Thread-1").start();new Thread(new InnerClass(),"Thread-2").start();new Thread(new InnerClass(),"Thread-3").start();}private static class InnerClass implements Runnable{@Overridepublic void run() {Counter.count.set(Counter.count.get()+1);System.out.println(Thread.currentThread().getName()+ ",count-hashcode="+Counter.count.hashCode()+",count-value="+Counter.count.get());}}private static class Counter{public static ThreadLocal<Integer> count = new ThreadLocal<Integer>(){@Overrideprotected Integer initialValue() {return 0;}};}
}//执行结果
Thread-2,count-hashcode=742865302,count-value=1
Thread-3,count-hashcode=742865302,count-value=1
Thread-1,count-hashcode=742865302,count-value=1

从上面的输出可以看出,每个线程的count对象是不一样。

四、ThreadLocal原理

方案一:ThreadLocal维护线程与实例之间的映射

  既然每个访问 ThreadLocal 变量的线程都有自己的一个“本地”实例副本。一个可能的方案就是 ThreadLocal 维护一个 Map,键是 Thread,值是它在该 Thread 内的实例。线程通过该 ThreadLocal 的 get() 方案获取实例时,只需要以线程为键,从 Map 中找出对应的实例即可。该方案如下图所示
这里写图片描述

  该方案可满足上文提到的每个线程内一个独立备份的要求。每个新线程访问该 ThreadLocal 时,需要向 Map 中添加一个映射,而每个线程结束时,应该清除该映射。这里就有两个问题:

  • 增加线程与减少线程均需要写 Map,故需保证该 Map线程安全。虽然从ConcurrentHashMap的演进看Java多线程核心技术一文介绍了几种实现线程安全 Map的方式,但它或多或少都需要锁来保证线程的安全性
  • 线程结束时,需要保证它所访问的所有 ThreadLocal 中对应的映射均删除,否则可能会引起内存泄漏(后文会介绍避免内存泄漏的方法)

其中锁的问题,是 JDK 未采用该方案的一个原因。

方案二:Thread维护ThreadLocal与实例的映射

  上述方案中,出现锁的问题,原因在于多线程访问同一个 Map。如果该 Map 由 Thread 维护,从而使得每个 Thread 只访问自己的 Map,那就不存在多线程写的问题,也就不需要锁。该方案如下图所示。
这里写图片描述
  该方案虽然没有锁的问题,但是由于每个线程访问某 ThreadLocal 变量后,都会在自己的 Map 内维护该 ThreadLocal 变量与具体实例的映射,如果不删除这些引用(映射),则这些 ThreadLocal 不能被回收,可能会造成内存泄漏。后文会介绍 JDK 如何解决该问题。

下面从源码的角度来看看具体实现。

set方法:

public void set(T value) {Thread t = Thread.currentThread();//获取当前线程维护的map。//Thread内部维护了一个ThreadLocal.ThreadLocalMap类型的变量,这个变量存储的就是线程本地变量ThreadLocalMap map = getMap(t);if (map != null)map.set(this, value);else//创建mapcreateMap(t, value);
}void createMap(Thread t, T firstValue) {t.threadLocals = new ThreadLocalMap(this, firstValue);
}ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {table = new Entry[INITIAL_CAPACITY];//ThreadLocal变量在map的Entry数组中的位置,是由threadLocal对象的hashCode决定的int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);table[i] = new Entry(firstKey, firstValue);size = 1;setThreshold(INITIAL_CAPACITY);
}

get方法:

public T get() {Thread t = Thread.currentThread();ThreadLocalMap map = getMap(t);if (map != null) {ThreadLocalMap.Entry e = map.getEntry(this);if (e != null)return (T)e.value;}//设置初始值return setInitialValue();
}

五、ThreadLocal如何防止内存泄漏

  ThreadLocalMap 的每个 Entry 都是一个对键(也就是ThreadLocal变量)的弱引用,这一点从super(k)可看出。另外,每个 Entry 都包含了一个对值的强引用。

static class Entry extends WeakReference<ThreadLocal> {Object value;Entry(ThreadLocal k, Object v) {//对键的弱引用super(k);//对值的强引用value = v;}
}

  因为对键使用的是弱引用,所以在没有其他强引用指向ThreadLocal变量时,它可被回收,从而避免上文所述ThreadLocal不能被回收而造成的内存泄漏的问题。
  但是,这里又可能出现另外一种内存泄漏的问题。ThreadLocalMap 维护 ThreadLocal 变量与具体实例的映射,当 ThreadLocal 变量被回收后,该映射的键变为 null,该 Entry 无法被移除。从而使得实例被该 Entry 引用而无法被回收造成内存泄漏。
  针对该问题,ThreadLocalMap 的 set 方法中,通过 replaceStaleEntry 方法将所有键为 null 的 Entry 的值设置为 null,从而使得该值可被回收。另外,会在 rehash 方法中通过 expungeStaleEntry 方法将键和值为 null 的 Entry 设置为 null 从而使得该 Entry 可被回收。通过这种方式,ThreadLocal 可防止内存泄漏。

这篇关于正确理解 ThreadLocal 的原理与应用场景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080472

相关文章

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

Java中的CompletableFuture核心用法和常见场景

《Java中的CompletableFuture核心用法和常见场景》CompletableFuture是Java8引入的强大的异步编程工具,支持链式异步编程、组合、异常处理和回调,介绍其核心用法,通过... 目录1、引言2. 基本概念3. 创建 CompletableFuture3.1. 手动创建3.2.

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Java线程池核心参数原理及使用指南

《Java线程池核心参数原理及使用指南》本文详细介绍了Java线程池的基本概念、核心类、核心参数、工作原理、常见类型以及最佳实践,通过理解每个参数的含义和工作原理,可以更好地配置线程池,提高系统性能,... 目录一、线程池概述1.1 什么是线程池1.2 线程池的优势二、线程池核心类三、ThreadPoolE

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng